# 12.2 - Surface Area of Prisms And Cylinders 12.2 Surface Area of Prisms And Cylinders Prism: Polyhedron with two parallel, congruent bases Named after its base Surface area: Sum of the area of each face of the solid

Lateral area: Area of each lateral face Right Prism: Each lateral edge is perpendicular to both bases Oblique Prism: Each lateral edge is NOT perpendicular to both bases

Cylinder: Prism with circular bases Net: Two-dimensional representation of a solid Surface Area of a Right Prism: SA = 2B + PH B = area of one base P = Perimeter of one base

H = Height of the prism H Surface Area of a Right Cylinder: SA = 2B + PH 2 SA 2 r 2 rH

H 1. Name the solid that can be formed by the net. Cylinder 1. Name the solid that can be formed by the net.

Triangular prism 1. Name the solid that can be formed by the net. rectangular prism 2. Find the surface area of the right solid. SA = 2B + PH

SA = 2(30) + (22)(7) SA = 60 + 154 SA = 214 m2 B = bh B = (5)(6) B = 30 P=5+6+5+6 P = 22

2. Find the surface area of the right solid. SA = 2B + PH SA = 2(30) + (30)(10) SA = 60 + 300 1 B bh 2

1 B (12)(5) 2 B 30 c2 = a2 + b2 c2 = (5)2 + (12)2 c2 = 25 + 144 c2 = 169

c = 13 SA = 360 cm2 P = 5 + 12 + 13 P = 30 2. Find the surface area of the right solid. 2

SA 2 r 2 rH 2 SA 2 (2) 2 (2)(6) SA 2 (4) 2 (12) SA 8 24 SA 32 cm2

2. Find the surface area of the right solid. 2 SA 2 r 2 rH 8ft 12ft

2 SA 2 (4) 2 (4)(12) SA 2 (16) 2 (48) SA 32 96 SA 128 ft2

2. Find the surface area of the right solid. 9ft 6ft 1 B bh 2 1

B (6)(8) 2 B 24 SA = 2B + PH SA = 2(24) + (24)(9) SA = 48 + 216 8ft

SA = 264 ft2 c2 = (6)2 + (8)2 c2 = 36 + 64 c2 = 100 c = 10 P = 6 + 8 + 10 P = 24

2. Find the surface area of the right solid. A cylindrical bass drum has a radius of 5 inches and a depth of 12 inches. Find the surface area. 2 SA 2 r 2 rH

5in 12in 2 SA 2 (5) 2 (5)(12) SA 2 (25) 2 (60)

SA 50 120 SA 170 in2