Biology of Fishes ENV 422/NRE 422/EEB440

Biology of Fishes ENV 422/NRE 422/EEB440

Anatomy, Physiology, and Ecology of Fishes I Biology of Fishes 10.18.12 Overview Exam I Return & Review next week Presentations & Other Assignments Introduction to Anatomy, Physiology, and Ecology of Fishes Anatomy, Physiology, and Ecology Buoyancy and Locomotion

Swimming Feeding Mechanisms Buoyancy and Locomotion Movement in water Water ~800x denser than air High density provides upward force force buoyancy Buoyancy major force supporting a fish

Typical mean density of a fish carcass = 1075 kg/m3 Density of freshwater = 1000 kg/m3 Density of saltwater = 1025 kg/m3 Buoyancy and Locomotion Weight of fish slightly greater than buoyancy force fish must produce an upward force or life force that overcomes the downward pull of gravity not compensated for by buoyancy of water Mechanisms for generating lift

Hydrodynamic lift Hydrostatic lift Buoyancy and Locomotion Hydrodynamic lift Achieved using pectoral fins like airplane wings generate lift as fish swims; thrust applied via caudal fin Most common method for supporting weight of fish in water

Also used by fishes that regulate buoyancy in other ways Costs increase as speed decreases primarily due to increases in drag Examples Sharks, tunas, mackerels (fast-swimming teleosts) Hydrodynamic Lift Buoyancy and Locomotion Hydrostatic lift Achieved by storing light or low-density materials in the body same

mechanism as in submarines, hot air balloons, blimps These materials include gas, lipids, and low-density fluids Gas Contained within the swim bladder gas-filled sack just under spinal column Recall characteristic of bony fishes is presence of lungs Lung in primitive actinopterygians evolved into swim bladder Hydrostatic Lift

Gas contained in the swim bladder Physostomous bladder-gut connection can gulp or burp air (primitive condition) Physoclistous bladder is sealed must secrete into or diffuse gas out (Paracanthopterygii and Acanthopterygii) Gas provides greatest amount of hydrostatic life per unit volume, but presents a few problems Unstable in roll fish can easily tip side to side Gas changes volume with pressure; pressure increases with depth (1

atm pressure for every 10 m depth). Fish must continuously add or remove gas to remain neutrally buoyant if fish changes depths. Doesnt respond quickly to changes in position Gas Bladder Most fishes have gas/swim bladders, but some have lost them in favor of other strategies benthic life, lipids, low-density fluids. Hydrostatic Lift Lipid (fats, oils, related molecules) Found in livers of sharks and in the swim bladder wall, skeleton, dermis, and muscle of other fishes

Most common in deep water fishes that live near the bottom; also mid water fishes that make large vertical migrations Hydrostatic Lift Low-density fluids Water content of the fish is increased, bones are reduced, decreases the density of body fluids and tissues Only possible for marine fishes Found in deep water fishes

Buoyancy and Locomotion Trade-offs of various buoyancy mechanisms Swimming speed Hydrodynamic lift is more economical at higher swimming speeds cost of drag increases at low speeds, also harder to steer (maintain position) at slow speeds Hydrostatic lift is more economical at slow swimming speeds Gas is cheaper than lipids

Depth Gas becomes expensive at large depths high pressure makes it costly to fill, difficult to prevent diffusion into blood Exceptions to trends adaptations to specific habitats Sculpins, darters, etc. Swimming Recall density of fish is close to density of water therefore fish do not have to use their skeletons and muscles to support themselves (in contrast to terrestrial organisms).

As a result, all fins and the body can be used for locomotion. To swim, fish must generate thrust and overcome sources of resistance (drag, inertia). Swimming Types of swimming (6 primary forms) Anguilliform locomotion Subcarangiform locomotion Carangiform locomotion

Thunniform locomotion Ostraciiform locomotion Median or paired fins Swimming Anguilliform Locomotion eel like Successive waves of muscle contraction passed backward on alternate sides of body throws body into series of S-shaped curves

Amplitude increases toward tail Body wave pushes mass of water backward inertia of water Nearly all of body participates in undulatory, side-to-side motion Inefficient mode of swimming body is long, most of body (especially anterior) participates. Tail wags the head, therefore high drag Swimming Anguilliform Locomotion eel like

Considered primitive mode of swimming seen in hagfish, lamprey, many sharks Also seen in some more advanced groups such as eels Mode also used by many larval fishes flexible skeleton is poorly developed, other muscles and fins arent yet available for use Swimming Most fishes do not swim using anguilliform locomotion most are tail waggers Instead of using most of the body to push against water for forward propulsion, most fishes rely on a much smaller portion

If smaller portion of body undulates, side-to-side movement of head is reduced Reduction of side-to-side movement also accomplished by tapering of the body towards tail; large forward body mass increases inertia, making sideto-side movement difficult Evolutionary trend away from anguilliform, instead towards more caudal type propulsion found in most bony fishes Swimming Swimming Subcarangiform Locomotion

Two-thirds to one-half of the body is involved in producing the propulsive wave responsible for forward motion Side-to-side movement of head greatly reduced compared to anguilliform Fish using this method typically have large flexible caudal fins Most of swimming is accomplished by the waves passing down the body Caudal fin probably evolved for use in fast turning, hovering, and fast starts

Examples: trout, salmon, minnows, cods Swimming Carangiform Locomotion Side-to-side undulations are confined to the last third of the body Fish using this method typically have stiff caudal fins that are deeply forked with elongated upper and lower lobes Fin design is easier to move through the water (less drag) but still generates great force

Two major evolutionary developments to counteract side-to-side movement of the head: 1 trend towards deeper body with more weight concentrated towards head 2 caudal peduncle is greatly reduced Examples: clupeids, mackerels, jacks Swimming Thunniform Locomotion Carangiform locomotion developed to the extreme

Represents the end-point in evolutionary trend toward greater speed in underwater locomotion among fishes burst swimming speeds over 40 mph and cruising speeds ~10 mph Very little of the body is involved in producing forward movement Thrust generated almost entirely by tall, stiff, and deeply forked caudal fin easy to move, very powerful Drag is greatly reduced by extremely narrow caudal peduncle Swimming

Ostraciiform Locomotion Only seen in those fishes that are unable to move body side to side All propulsion comes from wagging the tail Slow-moving fishes, not streamlined Typically bodies of these fishes are encased in armor Example: boxfishes Swimming

Median or Paired fins Locomotion Wide variety of fishes that typically swim without using their body or caudal fin These fishes use either their median (anal and/or dorsal) or paired fins (pectoral) to move Generally tend to be slow-moving fishes Continuum of those that use undulation to those that use oscillation Median fin undulation

Paired fin undulation Intermediate Oscillation Median or Paired fins locomotion Median fin undulation (bowfin, electric fishes) Paired fin undulation (rays, skates)

Intermediate (triggerfishes, porcupine fishes) Oscillation (puffers) Highly maneuverable; exploit complex habitats (e.g. coral reefs, dense vegetation) Most can also use caudal fin for propulsion Swimming Important considerations in fish locomotion Many fishes have a specialized form of swimming

Specialization for 1 function usually involves a tradeoff in another function Tunas are specialized for high-speed cruising great distances at high speed, but not very maneuverable and poor swimmers at low speeds Cichlids and reef fishes are specialized for high maneuverability, but lower speed deep bodies, high dorsal/anal fins, large paired fins allow for precise movements in complex environments Pikes are specialized for accelerating large caudal fin with dorsal/ anal fins set back on body Swimming

Important considerations in fish locomotion We can identify some fishes that are specialized for one trait, however, most fishes use a variety of modes of swimming and are locomotor generalists as opposed to locomotor specialists Most fishes must cruise to get from place to place, accelerate to eat and avoid being eaten. Largemouth bass can raise dorsal/anal fins to gain thrust in a fast start attack, and can depress fins to reduce drag while chasing prey. Can also raise dorsal/anal fins to aid in maneuvering. Not all fishes fit neatly into these categories. These specializations are likely related to how fish feed

Recently Viewed Presentations

  • Hands-on workshop, intro to advanced ReaxFF T&J Tech,

    Hands-on workshop, intro to advanced ReaxFF T&J Tech,

    No discontinuities in energy or forces. No pre-defined reaction sites or types. Only 1 atom type per element. General ReaxFF rules. User should not have to pre-define reactive sites or reactionpathways; potential functions should be able to automatically handlecoordination changes...
  • Powerline Communications for Smart Grid

    Powerline Communications for Smart Grid

    The smart grid communications are supported by a heterogeneous set of network technologies, ranging from wireless to wireline solutions. Among the wireline alternatives, powerline communications, or PLC, have been deployed outdoor for last mile communications and indoor for home area...
  • UNCLASSIFED DEFENSE INTELLIGENCE AGENCY E-SITE Quarterly Business Review

    UNCLASSIFED DEFENSE INTELLIGENCE AGENCY E-SITE Quarterly Business Review

    Base Period - dd mm yy - dd mm yy <IDENTIFY SCHEDULE STATUS - PROJECT ON TRACK, BEHIND SCHEDULE, SCHEDULE ISSUES> ... Staffing Status Through XX/XX/XX. Cleared On-Site. Cleared On Vendor's. Site. Un-Cleared On Vendor's Site. Total # of FTEs...
  • Recall Lecture 12

    Recall Lecture 12

    * = 4.8 = 4.3 Vo (V) Vi (V) 5 0.7 Cutoff Active 0.2 x 5 Saturation Vi (V) Bipolar Transistor Biasing Biasing refers to the DC voltages applied to the transistor for it to turn on and operate in...
  • NEW Addition to our Retention and Success Initiative

    NEW Addition to our Retention and Success Initiative

    Students with (7) C-, D, F, W, NC, U grades at UCF will be placed in a probationary lack of progress status with the college. Students will meet with a CECS/COP advisor. Students with (10) C-,D, F, W, NC, U...
  • Childrens participation: an international review of lessons learned

    Childrens participation: an international review of lessons learned

    Franklin Gothic Book Arial Constantia Brush Script MT Calibri Rage Italic Pushpin 1_Pushpin 2_Pushpin 3_Pushpin Children's participation: an international review of lessons learned Gerison Lansdown PowerPoint Presentation PowerPoint Presentation Implications of Article 12 What has been done?
  • MSP past prompts - SWIFT Classroom

    MSP past prompts - SWIFT Classroom

    Multi-paragraph . essay. A talent I would choose if I could have ANY talent - Choose ONE. Explain. WHY I would choose that for my talent. F. A. T. P. Your principal (in your case, it would be Ms. Clapp)...
  •  Learning Goals: 1.Analyze how the Emancipation Proclamation affected

    Learning Goals: 1.Analyze how the Emancipation Proclamation affected

    Analyze how the Emancipation Proclamation affected the war effort. Identify contributions African American soldiers made to the Union cause. The picture is the 54th Massachusetts at the Battle of Fort Wagner in Charleston, South Carolina. Journal Question: You have been...