Chapter 19, Cardiovascular System - Blood Vessel (Anatomy)

Chapter 19, Cardiovascular System - Blood Vessel (Anatomy)

The Cardiovascular System: Blood Vessels Anatomy Chapter 19, Cardiovascular System - Blood Vess el 19 1 Blood Vessels Blood is carried in a closed system of vessels that begins and ends at the heart The three major types of vessels are arteries,

capillaries, and veins Arteries carry blood away from the heart, veins carry blood toward the heart Capillaries contact tissue cells and directly serve cellular needs Chapter 19, Cardiovascular System - Blood Vess el 2 Generalized Structure of Blood Vessels Arteries and veins are composed of three tunics tunica interna, tunica media, and tunica externa

Lumen central blood-containing space surrounded by tunics Capillaries are composed of endothelium with sparse basal lamina Chapter 19, Cardiovascular System - Blood Vess el 3 Generalized Structure of Blood Vessels Chapter 19, Cardiovascular System - Blood Vess el

4 Figure 19.1b Tunics Tunica interna (tunica intima) Endothelial layer that lines the lumen of all vessels In vessels larger than 1 mm, a subendothelial connective tissue basement membrane is present Tunica media Smooth muscle and elastic fiber layer, regulated by sympathetic nervous system

Controls vasoconstriction/vasodilation of vessels Chapter 19, Cardiovascular System - Blood Vess el 5 Tunics Tunica externa (tunica adventitia) Collagen fibers that protect and reinforce vessels Larger vessels contain vasa vasorum Chapter 19, Cardiovascular System - Blood Vess el

6 Elastic (Conducting) Arteries Thick-walled arteries near the heart; the aorta and its major branches Large lumen allow low-resistance conduction of blood Contain elastin in all three tunics Withstand and smooth out large blood pressure fluctuations Allow blood to flow fairly continuously through the body Chapter 19, Cardiovascular System - Blood Vess

el 7 Muscular (Distributing) Arteries and Arterioles Muscular arteries distal to elastic arteries; deliver blood to body organs Have thick tunica media with more smooth muscle and less elastic tissue Active in vasoconstriction Arterioles smallest arteries; lead to capillary beds Control flow into capillary beds via vasodilation

and constriction Chapter 19, Cardiovascular System - Blood Vess el 8 Capillaries Primary function is to permit the exchange of nutrients and gases between the blood and tissue cells. Capillaries are the smallest blood vessels Walls consisting of a thin tunica interna, one cell thick Allow only a single RBC to pass at a time

Pericytes on the outer surface stabilize their walls There are three structural types of capillaries: continuous, fenestrated, and sinusoids Chapter 19, Cardiovascular System - Blood Vess el 9 Continuous Capillaries Continuous capillaries are abundant in the skin and muscles, and have: Endothelial cells that provide an uninterrupted lining

Adjacent cells that are held together with tight junctions Intercellular clefts of unjoined membranes that allow the passage of fluids Chapter 19, Cardiovascular System - Blood Vess el 10 Continuous Capillaries Continuous capillaries of the brain: Have tight junctions completely around the endothelium

Constitute the blood-brain barrier Chapter 19, Cardiovascular System - Blood Vess el 11 Continuous Capillaries Chapter 19, Cardiovascular System - Blood Vess el Figure 19.3a

12 Fenestrated Capillaries Found wherever active capillary absorption or filtrate formation occurs (e.g., small intestines, endocrine glands, and kidneys) Characterized by: An endothelium riddled with pores (fenestrations) Greater permeability to solutes and fluids than other capillaries Chapter 19, Cardiovascular System - Blood Vess el 13

Fenestrated Capillaries Chapter 19, Cardiovascular System - Blood Vess el Figure 19.3b 14 Sinusoids Highly modified, leaky, fenestrated capillaries with large lumens Found in the liver, bone marrow, lymphoid tissue,

and in some endocrine organs Allow large molecules (proteins and blood cells) to pass between the blood and surrounding tissues Blood flows sluggishly, allowing for modification in various ways Chapter 19, Cardiovascular System - Blood Vess el 15 Sinusoids Chapter 19, Cardiovascular System - Blood Vess el

Figure 19.3c 16 Capillary Beds A microcirculation of interwoven networks of capillaries, consisting of: Vascular shunts metarteriolethoroughfare channel connecting an arteriole directly with a postcapillary venule True capillaries 10 to 100 per capillary bed, capillaries branch off the metarteriole and return to the thoroughfare channel at the distal end of the bed

Chapter 19, Cardiovascular System - Blood Vess el 17 Capillary Beds Chapter 19, Cardiovascular System - Blood Vess el Figure 19.4a 18

Capillary Beds Chapter 19, Cardiovascular System - Blood Vess el Figure 19.4b 19 Blood Flow Through Capillary Beds Precapillary sphincter Cuff of smooth muscle that surrounds each true capillary Regulates blood flow into the capillary

Blood flow is regulated by vasomotor nerves and local chemical conditions, so it can either bypass or flood the capillary bed Chapter 19, Cardiovascular System - Blood Vess el 20 Venous System: Venules Are formed when capillary beds unite Allow fluids and WBCs to pass from the bloodstream to tissues

Postcapillary venules smallest venules, composed of endothelium and a few pericytes Large venules have one or two layers of smooth muscle (tunica media) Chapter 19, Cardiovascular System - Blood Vess el 21 Venous System: Veins Veins are: Formed when venules converge Composed of three tunics, with a thin tunica media

and a thick tunica externa consisting of collagen fibers and elastic networks Capacitance vessels (blood reservoirs) that contain 65% of the blood supply Chapter 19, Cardiovascular System - Blood Vess el 22 Venous System: Veins Veins have much lower blood pressure and thinner walls than arteries To return blood to the heart, veins have special adaptations

Large-diameter lumens, which offer little resistance to flow Valves (resembling semilunar heart valves), which prevent backflow of blood Venous sinuses specialized, flattened veins with extremely thin walls (e.g., coronary sinus of the heart and dural sinuses of the brain) Chapter 19, Cardiovascular System - Blood Vess el 23 Vascular Anastomoses

Merging blood vessels, more common in veins than arteries Arterial anastomoses provide alternate pathways (collateral channels) for blood to reach a given body region If one branch is blocked, the collateral channel can supply the area with adequate blood supply Thoroughfare channels are examples of arteriovenous anastomoses Chapter 19, Cardiovascular System - Blood Vess el 24

Blood Flow Actual volume of blood flowing through a vessel, an organ, or the entire circulation in a given period: Is measured in ml per min. Is equivalent to cardiac output (CO), considering the entire vascular system Is relatively constant when at rest Varies widely through individual organs, according to immediate needs Chapter 19, Cardiovascular System - Blood Vess el 25

The Cardiovascular System: Blood Vessels Physiology Chapter 19, Cardiovascular System - Blood Vess el 19 26 Blood Pressure (BP) Force per unit area exerted on the wall of a blood vessel by its contained blood

Expressed in millimeters of mercury (mm Hg) Measured in reference to systemic arterial BP in large arteries near the heart The differences in BP within the vascular system provide the driving force that keeps blood moving from higher to lower pressure areas Chapter 19, Cardiovascular System - Blood Vess el 27 Resistance Resistance opposition to flow

Measure of the amount of friction blood encounters as it passes through vessels Generally encountered in the systemic circulation Referred to as peripheral resistance (PR) The three important sources of resistance are blood viscosity, total blood vessel length, and blood vessel diameter Chapter 19, Cardiovascular System - Blood Vess el 28 Resistance Factors: Viscosity and Vessel

Length Resistance factors that remain relatively constant are: Blood viscosity thickness or stickiness of the blood Blood vessel length the longer the vessel, the greater the resistance encountered Chapter 19, Cardiovascular System - Blood Vess el 29 Resistance Factors: Blood Vessel Diameter

Changes in vessel diameter are frequent and significantly alter peripheral resistance Resistance varies inversely with the fourth power of vessel radius (one-half the diameter) For example, if the radius is doubled, the resistance is 1/16 as much Chapter 19, Cardiovascular System - Blood Vess el 30 Resistance Factors: Blood Vessel Diameter

Small-diameter arterioles are the major determinants of peripheral resistance Fatty plaques from atherosclerosis: Cause turbulent blood flow Dramatically increase resistance due to turbulence Chapter 19, Cardiovascular System - Blood Vess el 31 Blood Flow, Blood Pressure, and Resistance Blood flow (F) is directly proportional to the

difference in blood pressure (P) between two points in the circulation If P increases, blood flow speeds up; if P decreases, blood flow declines Blood flow is inversely proportional to resistance (R) If R increases, blood flow decreases R is more important than P in influencing local blood pressure Chapter 19, Cardiovascular System - Blood Vess el

32 Systemic Blood Pressure The pumping action of the heart generates blood flow through the vessels along a pressure gradient, always moving from higher- to lower-pressure areas Pressure results when flow is opposed by resistance Systemic pressure: Is highest in the aorta Declines throughout the length of the pathway Is 0 mm Hg in the right atrium The steepest change in blood pressure occurs in the arterioles

Chapter 19, Cardiovascular System - Blood Vess el 33 Systemic Blood Pressure Chapter 19, Cardiovascular System - Blood Vess el 34 Figure 19.5

Arterial Blood Pressure Arterial BP reflects two factors of the arteries close to the heart Their elasticity (compliance or distensibility) The amount of blood forced into them at any given time Blood pressure in elastic arteries near the heart is pulsatile (BP rises and falls) Chapter 19, Cardiovascular System - Blood Vess el 35

Arterial Blood Pressure Systolic pressure pressure exerted on arterial walls during ventricular contraction Diastolic pressure lowest level of arterial pressure during a ventricular cycle Pulse pressure the difference between systolic and diastolic pressure Mean arterial pressure (MAP) pressure that propels the blood to the tissues MAP = diastolic pressure + 1/3 pulse pressure Chapter 19, Cardiovascular System - Blood Vess el 36

Capillary Blood Pressure Capillary BP ranges from 20 to 40 mm Hg Low capillary pressure is desirable because high BP would rupture fragile, thin-walled capillaries Low BP is sufficient to force filtrate out into interstitial space and distribute nutrients, gases, and hormones between blood and tissues Chapter 19, Cardiovascular System - Blood Vess el 37

Venous Blood Pressure Venous BP is steady and changes little during the cardiac cycle The pressure gradient in the venous system is only about 20 mm Hg A cut vein has even blood flow; a lacerated artery flows in spurts Chapter 19, Cardiovascular System - Blood Vess el 38

Factors Aiding Venous Return Venous BP alone is too low to promote adequate blood return and is aided by the: Respiratory pump pressure changes created during breathing suck blood toward the heart by squeezing local veins Muscular pump contraction of skeletal muscles milk blood toward the heart Valves prevent backflow during venous return PLAY InterActive Physiology:

Cardiovascular System: Anatomy Review: Blood Vessel Structure and Function Chapter 19, Cardiovascular System - Blood Vess el 39 Factors Aiding Venous Return Chapter 19, Cardiovascular System - Blood Vess el Figure 19.6 40

Maintaining Blood Pressure Maintaining blood pressure requires: Cooperation of the heart, blood vessels, and kidneys Supervision of the brain Chapter 19, Cardiovascular System - Blood Vess el 41 Maintaining Blood Pressure

The main factors influencing blood pressure are: Cardiac output (CO) Peripheral resistance (PR) Blood volume Blood pressure = CO x PR Blood pressure varies directly with CO, PR, and blood volume Chapter 19, Cardiovascular System - Blood Vess el 42 Cardiac Output (CO)

Cardiac output is determined by venous return and neural and hormonal controls Resting heart rate is controlled by the cardioinhibitory center via the vagus nerves Stroke volume is controlled by venous return (end diastolic volume, or EDV) Under stress, the cardioacceleratory center increases heart rate and stroke volume The end systolic volume (ESV) decreases and MAP increases Chapter 19, Cardiovascular System - Blood Vess el

43 Cardiac Output (CO) Chapter 19, Cardiovascular System - Blood Vess el Figure 19.7 44 Controls of Blood Pressure Short-term controls: Are mediated by the nervous system and bloodborne chemicals

Counteract moment-to-moment fluctuations in blood pressure by altering peripheral resistance Long-term controls regulate blood volume Chapter 19, Cardiovascular System - Blood Vess el 45 Short-Term Mechanisms: Neural Controls Neural controls of peripheral resistance: Alter blood distribution to respond to specific demands

Maintain MAP by altering blood vessel diameter Neural controls operate via reflex arcs involving: Baroreceptors Vasomotor centers of the medulla and vasomotor fibers Vascular smooth muscle Chapter 19, Cardiovascular System - Blood Vess el 46 Short-Term Mechanisms: Vasomotor Center Vasomotor center a cluster of sympathetic neurons

in the medulla that oversees changes in blood vessel diameter Maintains blood vessel tone by innervating smooth muscles of blood vessels, especially arterioles Cardiovascular center vasomotor center plus the cardiac centers that integrate blood pressure control by altering cardiac output and blood vessel diameter Chapter 19, Cardiovascular System - Blood Vess el 47 Short-Term Mechanisms: Vasomotor Activity

Sympathetic activity causes: Vasoconstriction and a rise in blood pressure if increased Blood pressure to decline to basal levels if decreased Vasomotor activity is modified by: Baroreceptors (pressure-sensitive), chemoreceptors (O2, CO2, and H+ sensitive), higher brain centers, bloodborne chemicals, and hormones Chapter 19, Cardiovascular System - Blood Vess el 48

Short-Term Mechanisms: BaroreceptorInitiated Reflexes Increased blood pressure stimulates the cardioinhibitory center to: Increase vessel diameter Decrease heart rate, cardiac output, peripheral resistance, and blood pressure Chapter 19, Cardiovascular System - Blood Vess el 49

Short-Term Mechanisms: BaroreceptorInitiated Reflexes Declining blood pressure stimulates the cardioacceleratory center to: Increase cardiac output and peripheral resistance Low blood pressure also stimulates the vasomotor center to constrict blood vessels Chapter 19, Cardiovascular System - Blood Vess el 50

Baroreceptor Reflexes Chapter 19, Cardiovascular System - Blood Vess el Figure 19.8 51 Short-Term Mechanisms: Chemical Controls Blood pressure is regulated by chemoreceptor reflexes sensitive to oxygen and carbon dioxide Prominent chemoreceptors are the carotid and aortic bodies

Reflexes that regulate blood pressure are integrated in the medulla Higher brain centers (cortex and hypothalamus) can modify BP via relays to medullary centers Chapter 19, Cardiovascular System - Blood Vess el 52 Chemicals that Increase Blood Pressure Adrenal medulla hormones norepinephrine and epinephrine increase blood pressure Antidiuretic hormone (ADH) causes intense vasoconstriction in cases of extremely low BP

Angiotensin II kidney release of renin generates angiotensin II, which causes intense vasoconstriction Endothelium-derived factors endothelin and prostaglandin-derived growth factor (PDGF) are both vasoconstrictors Chapter 19, Cardiovascular System - Blood Vess el 53 Chemicals that Decrease Blood Pressure Atrial natriuretic peptide (ANP) causes blood volume and pressure to decline Nitric oxide (NO) has brief but potent vasodilator

effects Inflammatory chemicals histamine, prostacyclin, and kinins are potent vasodilators Alcohol causes BP to drop by inhibiting ADH Chapter 19, Cardiovascular System - Blood Vess el 54 Long-Term Mechanisms: Renal Regulation Long-term mechanisms control BP by altering blood volume Baroreceptors adapt to chronic high or low blood pressure

Increased BP stimulates the kidneys to eliminate water, thus reducing BP Decreased BP stimulates the kidneys to increase blood volume and BP Chapter 19, Cardiovascular System - Blood Vess el 55 Kidney Action and Blood Pressure Kidneys act directly and indirectly to maintain longterm blood pressure Direct renal mechanism alters blood volume Indirect renal mechanism involves the reninangiotensin mechanism

Chapter 19, Cardiovascular System - Blood Vess el 56 Kidney Action and Blood Pressure Declining BP causes the release of renin, which triggers the release of angiotensin II Angiotensin II is a potent vasoconstrictor that stimulates aldosterone secretion Aldosterone enhances renal reabsorption and stimulates ADH release

PLAY InterActive Physiology: Cardiovascular System: Blood Pressure Regulation Chapter 19, Cardiovascular System - Blood Vess el 57 Kidney Action and Blood Pressure Chapter 19, Cardiovascular System - Blood Vess el

Figure 19.9 58 Monitoring Circulatory Efficiency Efficiency of the circulation can be assessed by taking pulse and blood pressure measurements Vital signs pulse and blood pressure, along with respiratory rate and body temperature Pulse pressure wave caused by the expansion and recoil of elastic arteries Radial pulse (taken on the radial artery at the wrist) is routinely used

Varies with health, body position, and activity Chapter 19, Cardiovascular System - Blood Vess el 59 Measuring Blood Pressure Systemic arterial BP is measured indirectly with the auscultatory method A sphygmomanometer is placed on the arm superior to the elbow Pressure is increased in the cuff until it is greater than systolic pressure in the brachial artery Pressure is released slowly and the examiner listens

with a stethoscope Chapter 19, Cardiovascular System - Blood Vess el 60 Measuring Blood Pressure The first sound heard is recorded as the systolic pressure The pressure when sound disappears is recorded as the diastolic pressure PLAY

InterActive Physiology: Cardiovascular System: Measuring Blood Pressure Chapter 19, Cardiovascular System - Blood Vess el 61 Variations in Blood Pressure Blood pressure cycles over a 24-hour period BP peaks in the morning due to waxing and waning levels of retinoic acid Extrinsic factors such as age, sex, weight, race,

mood, posture, socioeconomic status, and physical activity may also cause BP to vary Chapter 19, Cardiovascular System - Blood Vess el 62 Alterations in Blood Pressure Hypotension low BP in which systolic pressure is below 100 mm Hg Hypertension condition of sustained elevated arterial pressure of 140/90 or higher Transient elevations are normal and can be caused

by fever, physical exertion, and emotional upset Chronic elevation is a major cause of heart failure, vascular disease, renal failure, and stroke Chapter 19, Cardiovascular System - Blood Vess el 63 Hypotension Orthostatic hypotension temporary low BP and dizziness when suddenly rising from a sitting or reclining position Chronic hypotension hint of poor nutrition and warning sign for Addisons disease

Acute hypotension important sign of circulatory shock Threat to patients undergoing surgery and those in intensive care units Chapter 19, Cardiovascular System - Blood Vess el 64 Hypertension Hypertension maybe transient or persistent Primary or essential hypertension risk factors in primary hypertension include diet, obesity, age, race, heredity, stress, and smoking

Secondary hypertension due to identifiable disorders, including excessive renin secretion, arteriosclerosis, and endocrine disorders Chapter 19, Cardiovascular System - Blood Vess el 65 Blood Flow Through Tissues Blood flow, or tissue perfusion, is involved in: Delivery of oxygen and nutrients to, and removal of wastes from, tissue cells Gas exchange in the lungs

Absorption of nutrients from the digestive tract Urine formation by the kidneys Blood flow is precisely the right amount to provide proper tissue function Chapter 19, Cardiovascular System - Blood Vess el 66 Velocity of Blood Flow Blood velocity: Changes as it travels through the systemic circulation

Is inversely proportional to the cross-sectional area Slow capillary flow allows adequate time for exchange between blood and tissues Chapter 19, Cardiovascular System - Blood Vess el 67 Velocity of Blood Flow Chapter 19, Cardiovascular System - Blood Vess el

Figure 19.13 68 Autoregulation: Local Regulation of Blood Flow Autoregulation automatic adjustment of blood flow to each tissue in proportion to its requirements at any given point in time Blood flow through an individual organ is intrinsically controlled by modifying the diameter of local arterioles feeding its capillaries MAP remains constant, while local demands

regulate the amount of blood delivered to various areas according to need Chapter 19, Cardiovascular System - Blood Vess el 69 Metabolic Controls Declining tissue nutrient and oxygen levels are stimuli for autoregulation Hemoglobin delivers nitric oxide (NO) as well as oxygen to tissues Nitric oxide induces vasodilation at the capillaries to help get oxygen to tissue cells

Other autoregulatory substances include: potassium and hydrogen ions, adenosine, lactic acid, histamines, kinins, and prostaglandins Chapter 19, Cardiovascular System - Blood Vess el 70 Myogenic Controls Inadequate blood perfusion or excessively high arterial pressure: Are autoregulatory Provoke myogenic responses stimulation of vascular smooth muscle

Vascular muscle responds directly to: Increased vascular pressure with increased tone, which causes vasoconstriction Reduced stretch with vasodilation, which promotes increased blood flow to the tissue Chapter 19, Cardiovascular System - Blood Vess el 71 Long-Term Autoregulation Is evoked when short-term autoregulation cannot meet tissue nutrient requirements

May evolve over weeks or months to enrich local blood flow Angiogenesis takes place: As the number of vessels to a region increases When existing vessels enlarge When a heart vessel becomes partly occluded Routinely in people in high altitudes, where oxygen content of the air is low Chapter 19, Cardiovascular System - Blood Vess el 72 Blood Flow: Skeletal Muscles Resting muscle blood flow is regulated by myogenic

and general neural mechanisms in response to oxygen and carbon dioxide levels When muscles become active, hyperemia is directly proportional to greater metabolic activity of the muscle (active or exercise hyperemia) Arterioles in muscles have cholinergic, and alpha () and beta () adrenergic receptors and adrenergic receptors bind to epinephrine Chapter 19, Cardiovascular System - Blood Vess el 73 Blood Flow: Skeletal Muscle Regulation

Muscle blood flow can increase tenfold or more during physical activity as vasodilation occurs Low levels of epinephrine bind to receptors Cholinergic receptors are occupied Intense exercise or sympathetic nervous system activation results in high levels of epinephrine High levels of epinephrine bind to receptors and cause vasoconstriction This is a protective response to prevent muscle oxygen demands from exceeding cardiac pumping ability Chapter 19, Cardiovascular System - Blood Vess el

74 Blood Flow: Brain Blood flow to the brain is constant, as neurons are intolerant of ischemia Metabolic controls brain tissue is extremely sensitive to declines in pH, and increased carbon dioxide causes marked vasodilation Myogenic controls protect the brain from damaging changes in blood pressure Decreases in MAP cause cerebral vessels to dilate to ensure adequate perfusion Increases in MAP cause cerebral vessels to

constrict Chapter 19, Cardiovascular System - Blood Vess el 75 Blood Flow: Brain The brain can regulate its own blood flow in certain circumstances, such as ischemia caused by a tumor The brain is vulnerable under extreme systemic pressure changes MAP below 60mm Hg can cause syncope (fainting) MAP above 160 can result in cerebral edema

Chapter 19, Cardiovascular System - Blood Vess el 76 Blood Flow: Skin Blood flow through the skin: Supplies nutrients to cells in response to oxygen need Helps maintain body temperature Provides a blood reservoir Chapter 19, Cardiovascular System - Blood Vess

el 77 Blood Flow: Skin Blood flow to venous plexuses below the skin surface: Varies from 50 ml/min to 2500 ml/min, depending on body temperature Is controlled by sympathetic nervous system reflexes initiated by temperature receptors and the central nervous system

Chapter 19, Cardiovascular System - Blood Vess el 78 Temperature Regulation As temperature rises (e.g., heat exposure, fever, vigorous exercise): Hypothalamic signals reduce vasomotor stimulation of the skin vessels Heat radiates from the skin Sweat also causes vasodilation via bradykinin in perspiration Bradykinin stimulates the release of NO

As temperature decreases, blood is shunted to deeper, more vital organs Chapter 19, Cardiovascular System - Blood Vess el 79 Blood Flow: Lungs Blood flow in the pulmonary circulation is unusual in that: The pathway is short Arteries/arterioles are more like veins/venules (thin-walled, with large lumens)

They have a much lower arterial pressure (24/8 mm Hg versus 120/80 mm Hg) Chapter 19, Cardiovascular System - Blood Vess el 80 Blood Flow: Lungs The autoregulatory mechanism is exactly opposite of that in most tissues Low oxygen levels cause vasoconstriction; high levels promote vasodilation

This allows for proper oxygen loading in the lungs Chapter 19, Cardiovascular System - Blood Vess el 81 Blood Flow: Heart Small vessel coronary circulation is influenced by: Aortic pressure The pumping activity of the ventricles During ventricular systole:

Coronary vessels compress Myocardial blood flow ceases Stored myoglobin supplies sufficient oxygen During ventricular diastole, oxygen and nutrients are carried to the heart Chapter 19, Cardiovascular System - Blood Vess el 82 Blood Flow: Heart Under resting conditions, blood flow through the heart may be controlled by a myogenic mechanism

During strenuous exercise: Coronary vessels dilate in response to local accumulation of carbon dioxide Blood flow may increase three to four times Blood flow remains constant despite wide variation in coronary perfusion pressure Chapter 19, Cardiovascular System - Blood Vess el 83 Capillary Exchange of Respiratory Gases and Nutrients Oxygen, carbon dioxide, nutrients, and metabolic

wastes diffuse between the blood and interstitial fluid along concentration gradients Oxygen and nutrients pass from the blood to tissues Carbon dioxide and metabolic wastes pass from tissues to the blood Water-soluble solutes pass through clefts and fenestrations Lipid-soluble molecules diffuse directly through endothelial membranes Chapter 19, Cardiovascular System - Blood Vess el 84

Capillary Exchange of Respiratory Gases and Nutrients Chapter 19, Cardiovascular System - Blood Vess el Figure 19.14.1 85 Capillary Exchange of Respiratory Gases and Nutrients Chapter 19, Cardiovascular System - Blood Vess

el Figure 19.14.2 86 Capillary Exchange: Fluid Movements Direction and amount of fluid flow depends upon the difference between: Capillary hydrostatic pressure (HPc) Capillary colloid osmotic pressure (OPc) HPc pressure of blood against the capillary walls: Tends to force fluids through the capillary walls

Is greater at the arterial end of a bed than at the venule end OPc created by nondiffusible plasma proteins, which draw water toward themselves Chapter 19, Cardiovascular System - Blood Vess el 87 Net Filtration Pressure (NFP) NFP considers all the forces acting on a capillary bed

NFP = (HPc HPif) (OPc OPif) At the arterial end of a bed, hydrostatic forces dominate (fluids flow out) Chapter 19, Cardiovascular System - Blood Vess el 88 Net Filtration Pressure (NFP) At the venous end of a bed, osmotic forces dominate (fluids flow in) More fluids enter the tissue beds than return blood,

and the excess fluid is returned to the blood via the lymphatic system PLAY InterActive Physiology: Cardiovascular System: Autoregulation and Capillary Dynamics Chapter 19, Cardiovascular System - Blood Vess el 89 Net Filtration Pressure (NFP)

Chapter 19, Cardiovascular System - Blood Vess el Figure 19.15 90 Circulatory Shock Circulatory shock any condition in which blood vessels are inadequately filled and blood cannot circulate normally Results in inadequate blood flow to meet tissue needs

Chapter 19, Cardiovascular System - Blood Vess el 91 Circulatory Shock Three types include: Hypovolemic shock results from large-scale or rapid blood loss Vascular shock poor circulation resulting from extreme vasodilation Cardiogenic shock the heart cannot sustain adequate circulation

Chapter 19, Cardiovascular System - Blood Vess el 92 Events of Hypovolemic Shock Chapter 19, Cardiovascular System - Blood Vess el Figure 19.16 93

Circulatory Pathways The vascular system has two distinct circulations Pulmonary circulation short loop that runs from the heart to the lungs and back to the heart Systemic circulation routes blood through a long loop to all parts of the body and returns to the heart Chapter 19, Cardiovascular System - Blood Vess el 94

Differences Between Arteries and Veins Arteries Veins Delivery Blood pumped into single systemic artery the aorta Blood returns via superior and interior venae cavae and the coronary sinus

Location Deep, and protected by tissue Both deep and superficial Pathways Fair, clear, and defined Convergent interconnections

Supply/drainage Predictable supply Dural sinuses and hepatic portal circulation Chapter 19, Cardiovascular System - Blood Vess el 95 Developmental Aspects The endothelial lining of blood vessels arises from

mesodermal cells, which collect in blood islands Blood islands form rudimentary vascular tubes through which the heart pumps blood by the fourth week of development Fetal shunts (foramen ovale and ductus arteriosus) bypass nonfunctional lungs The ductus venosus bypasses the liver The umbilical vein and arteries circulate blood to and from the placenta Chapter 19, Cardiovascular System - Blood Vess el 96

Developmental Aspects Blood vessels are trouble-free during youth Vessel formation occurs: As needed to support body growth For wound healing To rebuild vessels lost during menstrual cycles With aging, varicose veins, atherosclerosis, and increased blood pressure may arise Chapter 19, Cardiovascular System - Blood Vess el 97

Pulmonary Circulation Chapter 19, Cardiovascular System - Blood Vess el Figure 19.17a 98 Pulmonary Circulation Chapter 19, Cardiovascular System - Blood Vess el

Figure 19.17b 99 Systemic Circulation Chapter 19, Cardiovascular System - Blood Vess el Figure 19.18 100

Aorta and Major Arteries Chapter 19, Cardiovascular System - Blood Vess el Figure 19.19b 101 Arteries of the Head and Neck Chapter 19, Cardiovascular System - Blood Vess el

102 Figure 19.20b Arteries of the Brain Chapter 19, Cardiovascular System - Blood Vess el 103 Figure 19.20d Arteries of the Upper Limbs and Thorax

Chapter 19, Cardiovascular System - Blood Vess el Figure 19.21b 104

Recently Viewed Presentations

  • OBJECTIVE QUESTIONS FOR NEET AIIMS JIPMER www.wisedane.com BIOLOGY

    OBJECTIVE QUESTIONS FOR NEET AIIMS JIPMER www.wisedane.com BIOLOGY

    ANSWER (C) EXPLANATION. Invasive species- An invasive species is a plant, fungus, or animal species that is not native to a specific location (an introduced species), and which has a tendency to spread to a degree believed to cause damage...
  • Home Health Review Tool - Home - Centers for Medicare ...

    Home Health Review Tool - Home - Centers for Medicare ...

    Yes.. HomeBound Requirement . IS MET. Proceed Step 4 (Need for . Skilled Care) *In determining whether the patient meets criterion two of the homebound definition, the clinician needs to take into account the illness or injury for which the...
  • The Scarlet Letter - JM Honors American Literature

    The Scarlet Letter - JM Honors American Literature

    Symbols/Motifs. Night vs. Day. The Scarlet Letter. The Meteor. Pearl. The Scaffold. The Prison Door/ The Rose bush. The Black Man. Night/Day: By emphasizing the alternation between sunlight and darkness, the novel organizes the plot's events into two categories: those...
  • INHERITANCE

    INHERITANCE

    Zoos. Aquaria. Wildlife reserves. Purpose of captive breeding. To prevent extinction of endangered species. Conserve species that may not survive well in the wild. Reintroduce animals back into the wild and preserve biodiversity
  • COEN 252 Computer Forensics - Santa Clara University

    COEN 252 Computer Forensics - Santa Clara University

    COEN 252 Computer Forensics Hard Drive Geometry Drive Geometry Basic Definitions: Track Sector Hard Drive Geometry Cylinder Hard Drive Geometry Writing and Reading on a Track Hard Drive Geometry Complete Disk Sectors Complete Sectors are written and read.
  • Ux PowerPoint Name - madison-lake.k12.oh.us

    Ux PowerPoint Name - madison-lake.k12.oh.us

    TOP FRONT RIGHT SIDE True Height Auxiliary Distance Detail Views An enlargement of a portion of another view to illustrate small features on a part Not to be confused with a Detail Drawing which is any drawing that contains all...
  • Welcome to Lead Employer

    Welcome to Lead Employer

    Acute DGH Trust employing c.5,000 staff. Payroll provider for c.30,000 NHS staff covering a variety of different terms & conditions. Currently Lead Employer for three HEE regions for c.4,700 Trainees (of which c.2600 are GP) from Southend to Southport -...
  • mrbarfieldsclass.weebly.com

    mrbarfieldsclass.weebly.com

    Of Mice and Men: A few miles south of Soledad, the Salinas River drops in close to the hillside bank and runs deep and green. The water is warm too, for it has slipped twinkling over the yellow sands in...