Designing Courses to Maximize Learning

Designing Courses to Maximize Learning

Teaching Metacognition Marsha C. Lovett, Ph.D. [email protected] Trojan Horse Metacognitive Lesson: Check your assumptions! Titanic Metacognitive Lesson: Know your weaknesses! Maginot Line

Metacognitive Lesson: Know when to adapt! Critically important, yet overlooked Metacognition involves thinking about ones own cognitive processes Thinking about ones thinking, learning, reasoning, problem solving, Metacognition is essential for effective learning in complex situations Teaching Metacognition = Improving

Learning Effective learning involves Planning and goal-setting Monitoring ones progress Adapting as needed These skills tap into metacognition Implication: Teaching students these skills will improve their learning

Overview of Talk 0. Setting the target 1. Changing students beliefs about learning 2. Teaching planning and goal setting 3. Giving practice at monitoring/adapting Expert vs. Novice Learner Emily: slightly worried test on day after playoffs essay tests a challenge sets a plan: start early outline key ideas

notes cause->effect stops to self-assess Monica: also anxious essay tests hard so study harder read/re-read text memorize vocabulary no explicit plan starts night before (Ertmer & Newby, 1996) The ideal: Self-regulated learning (SRL) Plan &

Set Goals Task constraints Beliefs about learning Knowing ones strengths & weaknesses Evaluate & Adapt Motivation Apply Strategies & Monitor (Butler, 1997; Pintrich, 2000; Winne & Hadwin, 1998)

Can expert learners be made? Early attempts to teach metacognition failed Abstract study strategies taught, but students couldnt apply them Concrete study strategies taught, but students couldnt transfer them or generalize beyond training Attitudes/beliefs difficult to change

Researchers concluded that metacognitive performance is a stable trait Overview of Talk 0. Setting the target 1. Changing students beliefs about learning 2. Teaching planning and goal setting 3. Giving practice at monitoring/adapting Math is hard. Beliefs have consequences!

Beliefs about learning impact SRL cycle: Plan Set Goals Evaluate Adapt Apply Strategies Monitor Learning is quick/easy vs. hard/effortful Being a good learner is innate vs. develops

Beliefs predict performance Research Method Students beliefs assessed: incremental vs. fixed view of intelligence Students scores (grades + achievement) collected in 6th-7th grade Key Result

Students who endorsed more of an incremental view earned higher grades, even after controlling for prior achievement (Henderson & Dweck, 1990) Path Model Learning goals Beliefs about intelligence Productive

strategies Self-efficacy Learning/ Performance gains Changing beliefs Research Method Students in an 8-week workshop on learning received either 2 lessons on

brain as muscle (experimental) or memory strategies (control) Students beliefs assessed before and after Students math grades collected Teachers (blind) ratings of effort collected

(Blackwell et al, 2007) Changing beliefs Key Results: Experimental vs. control Experimental group endorsed incremental beliefs more after intervention Experimental group showed more

increases in motivation, according to teacher ratings Experimental group showed upturn in their math grade trajectories (Blackwell et al, 2007) Changing beliefs: Results (contd) (Blackwell et al, 2007) Changing beliefs: College level Research Method

Stanford University students recruited for pen pals program promoting either malleable or fixed intelligence plus a baseline control condition Pen pals met three times to write letters Race (African American, White) used as a blocking variable (Aronson et al, 2002)

Changing beliefs: College level Key Results Short term effects on beliefs, as predicted Long term effects end of school year: Belief changes between conditions maintained Enjoyment of academics condition differences*

Condition differences in Spring quarter GPA, controlling for prior SAT *Condition differences larger for African American students Changing beliefs: Summary By working to change students beliefs about learning/intelligence, we can see:

Sustained changes in belief (for months) Increased motivation/effort More positive attitudes Improved performance (even after a delay) Overview of Talk 0. Setting the target 1. Changing students beliefs about learning 2. Teaching planning and goal setting 3. Giving practice at monitoring/adapting Students often fail to plan

Transcript of Student Solving Statistics Problem Oh, okay. Um, I'm not really sure if- do I need to uh we can just, like, graph it, right? Uh line plot, I guess. oh, uh histograms, bar charts maybe a boxplot? Uh, no... Uh, uh histogram, um data table, umin statistics class that always worked when you got stuck, just make a boxplot, and see what happened. So uh, I'll boxplot them, um, y by x. [bleep] Uh oh, it says the variable rank has 30 categories, shall I continue? Usually that was bad, so I cancel that, because it shouldn't come out like that Teaching students to plan Consider student as an independent learner (e.g., in online learning environment) Critical skills: Setting learning goals, planning Plan Set Goals Evaluate Adapt

Apply Strategies Monitor Teaching students to plan Research Method Students recruited to learn about circulatory system using a hypermedia environment 30-minute training session (1:1 tutoring) Explained components of SRL to students

Exemplified them for the current learning task Control group received no training Talk-aloud protocols collected during learning Pre- & posttests on conceptual understanding (Azevedo & Cromley, 2004) Teaching students to plan Main Predictions

Students trained in SRL would show better conceptual learning Students trained in SRL would exhibit more SRLrelated behaviors, especially Planning their approach Setting goals for their own learning (Azevedo & Cromley, 2004) Teaching students to plan Key Results: Predictions met!

Students trained in SRL learned more: > 70% improvement (< 50% for control) Students trained in SRL showed more effective learning behaviors Time and effort planning Prior knowledge activation

Goal-directed search Evaluating content as an answer to current goal Reminding themselves of the current goal (Azevedo & Cromley, 2004) Teaching students to plan Comments Control condition had no training Very near transfer: training to application context But the potential in online learning is great:

Data on students learning behaviors are collected Students progress is assessed Give students feedback on their learning effectiveness Carnegie Mellons OLI project were working to do this! ( Overview of Talk 0. Setting the target

1. Changing students beliefs about learning 2. Teaching planning and goal setting 3. Giving practice at monitoring/adapting Accurate self-monitoring is hard Ignorance more frequently begets confidence than does knowledge. Darwin (Kruger & Dunning, 1999)

Case Study: Metacognitive Intervention at Carnegie Mellon Carnegie Mellon first-year math/science students often struggle, even though they are academically strong Professors lament students ineffective study behaviors and poor performance Students history of success may be creating obstacles Not used to having to work hard to learn Resistant to adapting because high school strategies were so successful (though no longer)

What metacognitive skills do they lack/need? Analyze their beliefs about learning Beliefs in intelligence as incremental, value of effort Expectations of performance show overconfidence Biology Grade Expectations A 108

B 45 Grand Total 153 71% 29% 100% Chemistry Grade Expectations A 109 A/B

25 B 68 B/C 2 C 10 D 2 Grand Total 216 50% 12%

31% 1% 5% 1% 100% Physics Grade Expectations A A/B B B/C C Grand Total

67 4 48 2 3 124 54% 3% 39% 2% 2% 100%

Calculus Grade Expectations A A/B B C Grand Total 149 14 68 6 237

63% 6% 29% 3% 100% What metacognitive skills do they lack/need? Analyze their planning/goal-setting skills and their use of study strategies

Report little use of planning skills Report only moderate use of study strategies Rate goal-setting/adapting less than effort After a semester in college, their belief in the value of effort significantly decreases Conclusion: Teach monitoring/adapting as a habit of mind My Approach with 1st-year Science Students at CMU Teach monitoring/adapting as a habit of mind Design for transfer: Introduce that skill and offer

practice applying it in multiple contexts all of which are in the math/science courses Minimize costs: Find quick and easy ways to incorporate this training (so students and faculty are more likely to engage) A New Tool: Wrappers A wrapper is an activity that surrounds a preexisting learning or assessment task and fosters students metacognition One can build a self-monitoring wrapper around any pre-existing part of a course (lecture, homework, test) Why Wrappers Work

Time efficient (Students and faculty will use them) Students are doing the task anyway Wrapper only adds a few minutes of time Metacognition practice is integrated with the task Students are self-monitoring in the context where it is

needed Feedback on accuracy can be built in Wrapper support can be gradually faded Other research shows even minor interventions that frame a task in a new way can significantly change behavior Homework Wrappers How they work: 1. Instructor creates self-assessment questions that focus on skills students should be monitoring 2. Students answer questions just before homework 3. Complete homework as usual

4. After homework, answer similar self-assessment questions and draw their own conclusions This homework is about vector arithmetic How quickly and easily can you solve problems that involve vector subtraction? Now that you have completed this homework, how quickly and easily can you solve problems? Homework Wrapper Results Most students self-ratings pre-homework to post 60 50

They noted effort as helpful 40 30 20 Number of Students 10 0 -4 -3

-2 -1 0 1 2 3 Change in Self-Rating

4 5 6 Some students ratings pre- homework to post They noted overconfidence and the need to do more Sample Student Comments from Homework Wrapper

I had some confusion at first on some of the details but this helped clear that up. I realized that I was a little slow at subtracting vectors, and now I understand it better and can find the difference more quickly. At the beginning of the exercise, I was more confident in using vectors than I probably should have been. I feel like I havent achieved progress, so I plan on attending course center and looking over the problems again. Using Wrapper Idea Online

Using Wrapper Idea Online Using Wrapper Idea Online Using Wrapper Idea Online Exam Wrappers How they work Upon returning graded exam, students completed exam reflection sheet in class Report study strategies, analyze errors, identify new approaches as needed

Before the next exam, sheets returned to students for review and consideration, and students made a study plan Exam Wrapper Results Students self-identified new approaches for exam preparation. Overall Impact of Intervention Did self-monitoring lead to change?

Majority of students reported using new strategies Same strategies New strategies Fewer strategies New Strategies Highlight Monitoring I didnt really know how well or not well I knew the material until I put myself to the test: really doing the problems on practice tests and re-solving homework problems without looking at the answer.

I went over previous tests and practice exams. Completing the practice exams in college help me to gauge what I still needed to focus in on in my study. New Strategies Also Address Overconfidence I began solving problems much more often, going to extra help sessions and, while I was reading or listening to lecture, looking for what I'm supposed to be getting out of it actively reading/listening, instead of just reading/listening. There is a big difference between actually doing problems and trying to memorize a particular solution while looking at examples. I have to say my advice is: do

a lot of practice problems. Conclusions Metacognitive skills and beliefs about learning have consequences for students learning and performance. Teaching metacognition introducing these new skills and beliefs, and giving students practice at applying them improves students learning. Low-cost interventions can have big payoffs, so try it! Thank You! For more information, email: [email protected]

References Aronson, J. M. (ed.). (2002). Improving academic achievement: Impact of psychological factors on education. San Diego: Academic Press. Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students' learning with hypermedia? Journal of Educational Psychology, 96(3), 523-535. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246-263. Butler, D. (1997). The roles of goal setting and self-monitoring in students' self-regulated engagement of tasks. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL. Ertmer, Peggy A., & Newby, Timothy J. (1996). The expert learner: Strategic, self-regulated, and reflective. Instructional Science, 24(1), 1-24.

Henderson, V. L., & Dweck, C. S. (1990). Motivation and achievement. In S. S. Feldman & G. R. Elliott (Eds.), At the threshold: The developing adolescent (pp. 308-329). Cambridge, MA: Harvard University Press. Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121-1134. Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 451-502). San Diego: Academic Press. Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. Hacker, J. Dunlosky, & A. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277-304). Mahwah, NJ: Erlbaum.

Recently Viewed Presentations

  • Desertification - Durham University

    Desertification - Durham University

    Desertification "Land degradation in arid, semi-arid and dry sub-humid areas, resulting from various factors including climatic variability and human activities" UNEP 1992 Desertification "An acute process that occurs at rates several orders of magnitude faster than purely climatically driven land...
  • Understanding Labratory Teating - A Parent&#x27;s Perspective

    Understanding Labratory Teating - A Parent's Perspective

    Sonja Hintz, RN, BSN True Health Medical Center Naperville, Illinois
  • Investigations &amp; Arrests -

    Investigations & Arrests -

    Investigations & Arrests. Stacey Mrak. Pulaski County Prosecutor. IPAC Newly Elected Conference 2014 ... Undercover officer invited into drug dealer home to do business would be valid consent but no search beyond plain view in area invited into. 11/19/2014. ......
  • Renaissance to Baroque - General Music and Chorus - Home

    Renaissance to Baroque - General Music and Chorus - Home

    Music and art was geared not only towards a religious nature but now also towards achieving a fulfilled life on earth. Music of the Renaissance: Canon - when several voices sing the same melody but enter at different times, or...
  • A Modest Proposal

    A Modest Proposal

    A Modest Proposal. An Introduction. Jonathan Swift. Was born in Dublin, Ireland on 30th of November, 1667. Was a clergyman of the Church of Ireland (an Anglican ministry) Was a writer most famous for his works Gulliver's Travels, A Tale...
  • ISB PowerPoint Template

    ISB PowerPoint Template

    Color Palette / Typography. Anatomy of Slide Design (Guide to changing Slide Footers) Section Break. Typical Slides. Table Designs. Content Boxes. ... This will help you reduce the size of your ppt by keeping image at relevant resolution .
  • PowerPoint プレゼンテーション

    PowerPoint プレゼンテーション

    e-Silkroad2004 FEBRUARY CONVENTION PLAN 2004.2.5 (c)TRI-B Introduction The e-Silkroad concept envisions innovative, creative model IT cities in the21st century by connecting Asian cities where the IT revolution rapidly progresses, and by collaborating through IT-centered business and cultural exchanges.
  • Chapter One

    Chapter One

    Possession a romance