Diapositive 1 - physics.muni.cz

Diapositive 1 - physics.muni.cz

Amino acids/subunit 153 113 628 Sipuncula Priapulida

marine worms Brachiopoda Annelida: Magelona papillicornis Iron porphyrin Active site

Monomeric Dinuclear copper Multimeric N. Terwilliger, J. Exp. Biol.201, 10851098 (1998) Dinuclear iron http://notes.chem.usyd.edu.au/course/codd/CHEM3105/Metalloproteins3.pdf

Crystal structure of hemerytrhin in unloaded state (pdb-code 1HMD) Hexacoordinate Fe(II) Pentacoordinate Fe(II) can bind O2 Dinuclear iron active site fixed by a four-helix bundle

http://notes.chem.usyd.edu.au/course/codd/CHEM3105/Metalloproteins3.pdf Active sites of the reduced forms of Hemerythrin, Ribonucleotide Reductase R2 protein, and the hydroxylase component of Methane Monooxygenase Bridging carboxylates Extra carboxylates stabilize higher oxidation states Catalytic Cycle of soluble Methane Monooxygenase (sMMO) Kopp & Lippard, Current Op. Chem. Biol. 2002, 568

Remember: Hr and sMMO share the main features: a four-helix-bundle surrounding a Fe-(carboxylato) 2-Fe core but differ in the particular environment of the Fe centers: -Hr coordination sphere is more histidine rich -Hr permits only terminal O2-coordination to a single iron, while sMMO diiron center presents open or labile coordination sites on both Fe -sMMO shows much greater coordinative flexibility upon oxidation -The larger number of anionic ligands allows sMMO to achieve the Fe IV oxidation state needed for oxidation methane.

Intermezzo: Bioligands Histidin pKa (His+) = 6.0 neutral at pH 7, but can be easily protonated, can serve as proton shuttle Both tautomers are found as ligands pKa (His) = 14.4 rarely exists in deprotonated form as bridging ligand (in Cu-Zn superoxide-dismutase) Aspartate & Glutamate

pKa (COOH) = 3.9 pKa (COOH) = 4.1 at pH 7 anionic even without coordination to a metal atom Cysteinate Cys pKa (SH) = 8.3 neutral at pH 7. Coordination to a metal atom stabilizes anionic form.

Tyrosinate Tyr pKa (TyrH) = 10.1 neutral at pH 7. Coordination to a metal atom stabilizes anionic form. Can be oxidized to a radical Tyr (see RNR-R2)! Intermezzo: Bioligands Methionine

neutral, soft ligand prefers FeII to FeIII occurs in cytochromes (electron transfer proteins) where it stabilizes the lower oxidation state General rules governing the Redox-potential in a transition-metal complex Larger number of ligands Anionic ligands

Soft ligands (methionine) stabilize higher oxidation states stabilize the lower oxidation state Porphyrins vinyl farnesyl

(isoprenoid chain) methyl formyl Heme a Amino acids/subunit 153

113 628 Panulirus interruptus Linulus polyphemus Octopus dofleini Megathura crenulata

Chemistry enabling O2 transport by hemocyanin Loading O2: 2Cu+ + O2 2Cu2+ + O22Red. Ox. Ox. Red.

Unoading O2: 2Cu2+ + O22- 2Cu+ + O2 Ox. Red. Red. Ox. strong oxidants Vybran standardn redukn potencily pi 25C:

F2 (g) + 2 e = 2 F (aq) MnO4 + 8H+ + 5e = Mn 2+ + 4H2O Cl2 (g) + 2 e = 2 Cl (aq) Pt2+ (aq) + 2 e = Pt (s) Br2 (g) + 2 e = 2 Br (aq) Fe3+ (aq) + e = Fe2+ (aq) I2 (g) + 2 e = 2 I (aq) 2 H2O + O2 (g) + 4 e = 4 OH (aq) O2 + 2H+ + 2e- = H2O2 ronger oxidant

stronger oxidant pH 7) Cu2+ (aq) + 2 e = Cu+ (aq) 2 H+(aq) + 2 e = H2 (g) Fe2+ (aq) + 2 e = Fe (s) Zn2+ (aq) + 2 e = Zn (s) Al3+ (aq) + 3 e = Al (s) Mg2+ (aq) + 2 e = Mg (s) Na+ (aq) + e = Na (s) Li+ (aq) + e =

Li (s) strong reductants + 2.87 + 1.51 + 1.36 + 1.18 + 1.07 + 0.77 + 0.54

+ 0.41 + 0.35 + 0.15 0.00 - 0.45 - 0.76 - 1.67 - 2.37 - 2.71 - 3.04

(at Chemistry enabling O2 transport by hemocyanin O2 stronger oxidant Loading O2: Cu+ stronger reductant OK 2Cu+ + O2 2Cu2+ + O22Red.

Ox. Ox. Red. Unloading O2: 2Cu2+ + O22- 2Cu+ + O2 Ox.

Red. Red. Ox. would procede in reverse direction in aqueous solutions at pH 7 But: Tetrahedral Cu- environment in hemocyanin favors Cu + ! The potential of the Cu 2+/Cu+ couple shifts to 0.3-0.4 V The potentials of both half-reactions become similar

The whole reaction becomes reversible General rules governing the Redox-potential in a transition-metal complex Larger number of ligands Anionic ligands Soft ligands (methionine) Coordination geometry imposed by the protein

stabilize higher oxidation states stabilize the lower oxidation state can stabilize the higher or the lower oxidation state Hemocyanin: History 1878 Leon Federicq: Sur lhemocyanine, substance nouvelle de sang de Poulpe (Octopus vulgaris) (Compt. Rend. Acad. Sci. 87, 996-998)

Discovery 1901 M. Henze: Zur Kenntniss des Haemocyanins Z. Physiol. Chem. 33, 370 Hemocyanin contains copper 1940 W. A. Rawlinson, Australian J. Exp. Biol. Med. Sci. 18, 131 Oxy-hemocyanin is diamagnetic http://webdoc.sub.gwdg.de/diss/2003/ackermann/ackermann.pdf On the search for functional hemocyanin model compounds

Karlin et al., JACS 1988, 110, 36903692 The first model complex showing reversible O2 binding by a dicopper unit However, this complex differs from oxy-Hc: Cu-Cu[] 1 1

4.36 Oxy-Hc 3.5-3.7 (O-O)[cm-1] 834 744-752 Karlin et al., J. Am. Chem. Soc. 1988, 110, 3690-3692

UV-VIS 440(2000) 525(11500) 590(7600) 1035(160) 340(20000) 580(100) Model complex showing reversible O2 binding and similar features to Hc

Kitajima et al., J. Am. Chem. Soc. 1989, 111, 8975-8976 Cu-Cu[] 2 3.56 (O-O)[cm-1] 741

UV-VIS 349(21000) 551(790) 2 Oxy-Hc 3.5-3.7 744-752

340(20000) 580(100) Functional hemocyanin models [(tmpa)2Cu2O2]2+ Karlin et al., JACS 1988, 110, 36903692 [Cu{HB(3,5-iPr2pz)3}]2(O2)

Kitajima et al., JACS 1989, 111, 8975-8976 UV-Vis absorption spectra of the oxy forms of hemocyanin and tyrosinase d vd dd 5-9 years later (1994, 1998): Active sites in hemocyanins determined by X-ray crystallography

Magnus et al.,Proteins Struct. Funct. Gen.1994 Limulus polyphemus Cuff et al.,J.Mol.Biol.1998 Octopus dofleini http://pollux.chem.umn.edu/~kinsinge/new_homepage/research/gss_presentation_3/sld019.htm L-DOPAquinone

The enzyme tyrosinase catalyzes the synthesis of the pigment melanin from tyrosine Tyrosinase versus Hemocyanin The coupled binuclear copper sites in tyrosinase and hemocyanin are very similar. Why is then tyrosinase capable of reacting with substrates while hemocyanin is not? Solomon (Angew. Chem. Int. Ed. Engl. 2001, 40, 4570-450): Difference in accessibility of the active site Hypothesis, 1980: Solomon et al., JACS 1980, 102, 7339-7344, p.7343

Angew. Chem. Int. Ed. 2001, 40, 4570-4590 Proof, 1998 (J. Biol. Chem. 273, 25889-25892): Hemocyanine active site* Phe49 blocks access to active site When the N-terminal fragment including Phe49 is removed, tarantula hemocyanine shows tyrosinase activity * From X-ray structure of L.polyphemus Hc., Magnus et al., Proteins Struct. Funct.Gen.19, 302-309

An earlier model for hemocyanin... turned out to be a model for the enzyme tyrosinase! Karlin et al., JACS 1984, 106, 2121-2128 Conclusions In many cases, metalloproteins use the same or similar active site for different purposes. The strategies to confer a particular activity to a given site include - Allowing/disallowing access of substrates to the active site

(including the dynamics of diffusion of substrate/product) -Modifying the electrostatic potential by mutating the amino acids coordinated to the metal or surrounding the binding pocket -Architecture of the binding pocket defines substrate selectivity and affects energy of transition statesgoverns reaction outcome

Recently Viewed Presentations

  • הקישור במולקולות והקשר לתכונות הצבע

    הקישור במולקולות והקשר לתכונות הצבע

    מדוע נוצר קשר? כדי לדעת האם מולקולה תהיה יציבה יש להשוות את אכלוס האלקטרונים באורביטלים המולקולריים לעומת אכלוסם באטומים לפני יצירת המולקולה.לשם כך, ניתן לחשב גודל שנקרא סדר הקשר:
  • STARR Biology EOC - Socorro Independent School District

    STARR Biology EOC - Socorro Independent School District

    Cell Structure and Function. Prokaryotes vs eukaryotes. Both have nucleic acids (DNA and or RNA) Both have ribosomes. Both have cellular membranes and or cell walls
  • Diversity, Inclusivity & Civility: Developing & Enhancing Students'

    Diversity, Inclusivity & Civility: Developing & Enhancing Students'

    The Dance of Incivility in Nursing Dr. Cindy Clark, Boise State University Creating a culture of civility requires communication, interaction, and an appreciation for the interests each person brings to the relationship. Cynthia Clark, 2008 What produces a safe classroom?
  • Arizona Industry GCU 221 Copper, Agriculture, Ranching, High

    Arizona Industry GCU 221 Copper, Agriculture, Ranching, High

    Generates more waste then mining any other material because source rock is 1% or less concentrated in copper ore. ... Crushing the ore down further and separating out the best pieces. Smelting - Ore Roasted to remove . sulphur. ......
  • MPS 4: Strategy

    MPS 4: Strategy

    _____ Time 90 s Then.. Discuss with neighbor Time 90 s PS retains evidence form MPS 1: Awareness Activity: individuals complete: PS form _____ Put your initials for what you think represents how you did as a PS; Put your...
  • Cink, kadmium, ólom, gallium, indium, tallium

    Cink, kadmium, ólom, gallium, indium, tallium

    It is a chalcophile element, favoring an association with sulfur, and is closely associated with zinc. The bulk of cadmium in nature is dispersed as isomorphic impurities in various other minerals, usually sulfide minerals. The principal carrier is in sphalerite.
  • Finding the Inverse of a Matrix - Waller's Wall

    Finding the Inverse of a Matrix - Waller's Wall

    The Inverse of a Matrix Let A be a square matrix with n rows and n columns. If there is an n x n matrix B such that AB = I and BA = I, then A and B are...
  • Teaching Dickens and Victorian Afterlives

    Teaching Dickens and Victorian Afterlives

    Further, one might consider how locations such as the hospital at St. Cloud's and even the apple orchard, employ what Stallybrass and White describe as inversion: "the reversible world which encodes ways that carnival inverts the everyday hierarchies, structures, rules...