Kein Folientitel - Indico for IAEA Conferences (Indico)

Kein Folientitel - Indico for IAEA Conferences (Indico)

Recent ASDEX Upgrade Research in Support of ITER and DEMO Hartmut Zohm for the ASDEX Upgrade /EUROfusion MST1 Team* MPI fr Plasmaphysik, Garching, Germany *see list at the end of the talk ASDEX Upgrade: machine and programme Edge: H-mode access and pedestal physics Core: transport and MHD stability Exhaust: operation at high Psep/R and Prad,core/Ptot Scenario development IAEA Fusion Energy Conference, OV2/2, St. Petersburg, Russia, 13.10.2014

Outline ASDEX Upgrade: machine and programme Edge: H-mode access and pedestal physics Core: transport and MHD stability Exhaust: operation at high Psep/R and Prad,core/Ptot Scenario development AUG Programme in support of ITER and DEMO ITER DEMO (example) Q=10: bN=1.8, H=1, n/nGW=0.85

Q30: bN=3.5, H=1.2, n/nGW=1.2 Psep/R = 15 MW/m, Prad,core/Ptot=0.3 Psep/R = 15 MW/m, Prad,core/Ptot=0.75 Large type I ELMs not allowed No ELMs allowed (?) Very small number of disruptions Virtually no disruptions

AUG Programme in support of ITER and DEMO ITER DEMO (example) Q=10: bN=1.8, H=1, n/nGW=0.85 Q30: bN=3.5, H=1.2, n/nGW=1.2 Psep/R = 15 MW/m, Prad,core/Ptot=0.3 Psep/R = 15 MW/m, Prad,core/Ptot=0.75

Large type I ELMs not allowed No ELMs allowed (?) Very small number of disruptions Virtually no disruptions ASDEX Upgrade has a powerful H&CD system Ion Cyclotron Resonance Heating: 8 MW @ 30-60 MHz Neutral Beam Injection:

20 MW @ 70-100 kV NBCD by tang. beams Electron Cyclotron Resonance Heating: 6 (8) MW @ 140 GHz 3 (6) MW @ 140/105 GHz Exhaust Exhaust studies studies at at high high P/R P/R

b-limit b-limit accessible accessible at at any any field field ECCD ECCD for for MHD MHD control control 2 x 8 off-midplane saddle coils for MHD control

New: rotating fields up to 150 Hz, continuous poloidal phase scan at constant n Massive outer W-divertor and Bare Steel Tiles P92 tiles (chemistry and ferromagnetism similar to EUROFER) (iron mostly saturated, typical r =1.7) massive tungsten tiles Both enhancements performed reliably

without problem during 2014 campaign A. Herrmann et al., this conference + switchable liquid He valve for reduction of pumping (high power scenarios) + new divertor manipulator allowing large area sample insertion Outline ASDEX Upgrade: machine and programme Edge: H-mode access and pedestal physics Core: transport and MHD stability Exhaust: operation at high Psep/R and Prad,core/Ptot Scenario development

H-mode operation: low density limit F. Ryter et al., Nucl. Fusion 2014 Increase of PLH at low density disappears when plotted versus q i points towards qi being main ingredient for edge Er unifies current and heating type dependence at low density

Er Reminder: PLH about 20% lower with all-metal wall, also seen on JET pi eni H-mode operation: low density limit F. Ryter et al., Nucl. Fusion 2014 C-Mod AUG DIII-D

JET JT-60U Transition to low density branch governed by e-i coupling scal ne,min =0.7I p0.34 a- 0.95 BT0.62 (R / a)0.4 assume that tei / tE const. at ne,min

inserting tE- and (medium density) PLH-scalings leads to ne,min scaling Scaling unifies experimental data, predicts ITER to be in linear regime H-mode operation: high density limit 1: Normal H-mode (density ) 2: degrading H-mode (only SOL ) 3: H-mode breakdown (pedestal erodes) M. Bernert et al., EPS 2014, to appear in PPCF 4: L-mode (density , MARFE, disruption)

H-mode density limit by combination of 2 effects Stagnation of core density build-up due to fuelling limit (source shifts to SOL) High SOL density leads to strong filamentary transport there changed boundary condition at target can increase filament velocity H-mode density limit by combination of 2 effects Stagnation of core density build-up due to fuelling limit (source shifts to SOL) High SOL density leads to strong filamentary transport there

changed boundary condition at target can increase filament velocity H-mode operation at n/nGW > 1 Edge density stays below nGW even with pellets at n = 1.5 nGW For DEMO: expect strong low collisionality anomalous particle pinch DEMO might be able to operate above n > nGW H-mode operation: ELM Mitigation at low n* W. Suttrop et al,, this conference Contrary to high n*-branch, poloidal spectrum is important best ELM mitigation coincides with strongest density pumpout note: also classical ELM-free phase can be triggered

H-mode operation: ELM Mitigation at low n* W. Suttrop et al,, this conference At optimum phasing, significant type ELM mitigation is observed ELMs still separate events, but much higher frequency, smaller DW due to strong density pumpout and Ti,ped decrease, H is reduced optimum mitigation when field is peeling resonant (MARS-F analysis) A. Kirk et al., this conference Outline ASDEX Upgrade: machine and programme

Edge: H-mode access and pedestal physics Core: transport and MHD stability Exhaust: operation at high Psep/R and Prad,core/Ptot Scenario development New Microwave Diagnostics for Turbulence Studies U. Stroth et al,, this conference Core transport: turbulence spectra during ECRH Response of density fluctuations to mid-radius ECRH in H-mode

low (k 4-8 cm-1) fluctuations increase while high k does not radial amplitude dependence consistent with local flux matched nonlinear GENE simulations that find ITG-regime T. Happel et al., subm. to Phys. Plasmas Core transport: Fast Ions and NBCD Region relevant for NBCD FIDA finds deviation from neo-classical slowing down at high PNBI

here, also NBCD not consistent with neo-classical prediction previous analysis indicated neo-classical slowing down at lower P NBI cause not yet clearly identified (some MHD activity present) B. Geiger et al., EPS 2014, to appear in PPCF Core stability: NTM suppression by ECCD

M. Reich et al., this conference Feedback system targets multiple mode control Core stability: NTM suppression by ECCD M. Reich et al., this conference Feedback system targets multiple mode control Core stability: NTM suppression by ECCD M. Reich et al., this conference

Feedback system targets multiple mode control Outline ASDEX Upgrade: machine and programme Edge: H-mode access and pedestal physics Core: transport and MHD stability Exhaust: operation at high Psep/R and Prad,core/Ptot Scenario development Broadening of divertor footprint A. Scarabosio et al., PSI 2014 B.Sieglin et al., PPCF 2013

Midplane lq small, scales like rp, not with R figure of merit Psep/R broadening by perpendicular transport described by lint = lq + 1.64 S scaling: S ~ n/Bp or 1/Ttarget consistent with increased c/cc|| Emphasizes need for detached divertor operation in ITER/DEMO Broadening of divertor footprint A. Scarabosio et al., PSI 2014 B.Sieglin et al., PPCF 2013 Midplane lq small, scales like rp, not with R figure of merit Psep/R broadening by perpendicular transport described by lint = lq + 1.64 S scaling: S ~ n/Bp or 1/Ttarget consistent with increased c/cc|| Emphasizes need for detached divertor operation in ITER/DEMO

Partial detachment at high Psep/R A. Kallenbach et al., this conference Feedback controlled N-seeding: qdiv < 5 MW/m2 at Pheat = 23 MW Psep/R = 10 MW/m (2/3 the ITER target) at H=0.9-1.0 with higher stronger seeding, full detachment, but density rises, H drops

Exhaust: present and future capabilities A. Kallenbach et al., this conference Applying the ITER divertor solution to DEMO, high frad is needed Exhaust: present and future capabilities AUG with Pheat=34 MW A. Kallenbach et al., this conference Applying the ITER divertor solution to DEMO, high frad is needed

Outline ASDEX Upgrade: machine and programme Edge: H-mode access and pedestal physics Core: transport and MHD stability Exhaust: operation at high Psep/R and Prad,core/Ptot Scenario development ITER baseline scenario development J. Schweinzer et al., this conference Stable discharges as long as enough gas puff and central heating

match is in q95, d, bN, n/nGW, and hence not in n* (also not in r*) confinement reduced, H=0.85 at ITER bN ELMs are large and mitigation techniques do not work reliably ITER baseline scenario development J. Schweinzer et al., this conference Due to changed operational window, target can only be met at higher bN gas puff needed to keep discharge stable, degrades pedestal with higher bN and N-seeding H=1 is recovered (increased edge stability) ITER baseline scenario development These findings suggest to move to lower Ip, higher bN (improved H-mode)

first attempt shows same WMHD at 20% lower Ip, target for optimisation The ASDEX Upgrade / EUROfusion MST1 Team J. Ahn1, L. Aho-Mantila2, S. kslompolo2, C. Angioni, O. Asunta2, M. de Baar3, M. Balden, L. Barrera Orte, K. Behler, J. Belapure, A. Bergmann, J. Bernardo 4, M. Bernert, M. Beurskens5, R. Bilato, G. Birkenmeier, V. Bobkov, A. Bock, A. Bogomolov 3, T. Bolzonella6, J. Boom, B. Bswirth, C. Bottereau1, A. Bottino, F. Braun, S. Brezinsek7, F. Brochard8, A. Buhler, A. Burckhart, P. Carvalho4, C. Cazzaniga6, D. Carralero, L. Casali, M. Cavedon, A. Chankin, I. Chapman 5, F. Clairet1, I. Classen3, S. Coda9, R. Coelho4, K. Coenen7, L. Colas1, G. Conway, S. Costea10, D.P. Coster, G. Croci11, G. Cseh12, A. Czarnecka13, P. de Marn, P. Denner7, R. D'Inca, D. Douai1, R. Drube, M. Dunne, B. Duval9, R. Dux, T. Eich, S. Elgeti, K. Engelhardt, K. Ertl, B. Esposito 6, E. Fable, U. Fantz, H. Faugel, F. Felici14, S. Fietz, A. Figueredo4, R. Fischer, O. Ford, P. Franzen, L. Frassinetti15, M. Frschle, G. Fuchert16, H. Fnfgelder, J.C. Fuchs, K. Gl-Hobirk, M. Garcia-Muoz 17, B. Geiger, L. Giannone, E. Giovannozzi6, C. Gleason-Gonzles7, T. Grler, T. Goodmann9, G. Gorini11, S. da Graca4, A. Grter, G. Granucci11, H. Greuner, J. Griehammer, M. Groth2, A. Gude, S. Gnter, L. Guimarais4, G. Haas, A.H. Hakola18, T. Happel, D. Hatch, T. Hauff, B. Heinemann, S. Heinzel, P. Hennequin1, A. Herrmann, J. Hobirk, M. Hlzl, T. Hschen, J.H. Holm 19, C. Hopf, F. Hoppe, A. Houben, V. Igochine, T. Ilkei 11, W. Jacob, A.S. Jacobsen19, J. Jacquot, M. Janzer, F. Jenko, T. Jensen19, C. Ksemann, A. Kallenbach, S. Klvin12, M. Kantor7, A. Kappatou3, O. Kardaun, J. Karhunen2, S. Kimmig, A. Kirk5, H.J.Klingshirn, M. Kocan, F. Koch, G. Kocsis12, A. Khn16, M. Kppen, J. Ktterl, R. Koslowski7, M. Koubiti1, M. Kraus, K. Krieger, A. Krivska20, D. Kogut1, A. Krmer-Flecken7, T. Kurki-Suonio2, B. Kurzan, K. Lackner, F. Laggner21, P.T. Lang, P. Lauber, N. Laznyi12, A. Lazaros22, A. Lebschy, F. Leuterer, Y. Liang7, Ch. Linsmeier, A. Litnovski7, A. Lohs, N.C. Luhmann23, T. Lunt, H. Maier, O. Maj, J. Mailloux5, A. Mancini11, A. Manhard, K. Mank, M.-E. Manso 4, M. Mantsinen24, P. Manz, M. Maraschek, E. Markina, C. Martens, P. Martin25,

A. Mayer, M. Mayer, D. Mazon1, P.J. McCarthy26, R. McDermott, G. Meisl, H. Meister, A. Medvedeva, P. Merkel, R. Merkel, V. Mertens, H. Meyer 5, O. Meyer1, D. Milanesio6, J. Miettunen2, A. Mlynek, F. Monaco, D. Moseev, H.W. Mller, S. Mller27, M. Mnich, A. Nemes-Czopf9, G. Neu, R. Neu, V. Nikolaeva4, S.K. Nielsen19, M. Nocente11, B. Nold16, J.-M. Noterdaeme, M. Oberkofler, R. Ochoukov, T. Odstrcil, G. Papp, H.K. Park 28, A. Pau6, G. Pautasso, M.S. Pedersen19, F. Penzel, P. Piovesan25, C. Piron25, B. Plaum16, B. Plckl, V. Plyusnin4, Y. Podoba, G. Pokol12, F. Pompon, E. Poli, K. Polozhiy, S. Potzel, R. Preuss, D. Prisiazhniuk, T. Ptterich, M. Ramish 16, C. Rapson, J. Rasmussen19, S.K. Rathgeber, G. Raupp, D. Rfy9, M. Reich, F. Reimold, M. Reinke5, T. Ribeiro, R. Riedl, G. Rocchi11, M. Rodriguez-Ramos17, V. Rohde, J. Roth, M. Rott, F. Ryter, M. Salewski 19, L. SanchisSanchez17, G. Santos4, J. Santos4, P. Sauter, A. Scarabosio, G. Schall, K. Schmid, O. Schmitz29, P.A. Schneider, W. Schneider, M. Schneller, R. Schrittwieser10, M. Schubert, T. Schwarz-Selinger, J. Schweinzer, B. Scott, T. Sehmer, M. Sertoli, A. Shalpegin 30, G. Sias6, M. Siccinio, B. Sieglin, A. Sigalov, A. Silva4, C. Silva4, P. Simon, F. Sommer, C. Sozzi11, M. Spolaore6, M. Stejner Petersen19, J. Stober, F. Stobbe, U. Stroth, E. Strumberger, K. Sugiyama, H.-J. Sun, W. Suttrop, T. Szepesi 12, T. Tala2, G. Tardini, C. Tichmann, D. Told, L. Tophj19, O. Tudisco6, U. von Toussaint, G. Trevisan25, W. Treutterer, M. Valovic5, P. Varela4, S. Varoutis7, D. Vezinet, N. Vianello25, J. Vicente4, T. Vierle, E. Viezzer, C. Vorpahl, D. Wagner, X. Wang, T. Wauters20, I. Weidl, M. Weiland, A. Weller, R. Wenninger, B. Wieland, M. Wiesinger21, M.Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, D. Wnderlich, E. Wrsching, Z. Yang, Q. Yu, I. Zammuto, D. Zarzoso, D. Zasche, M. van Zeeland 31, T. Zehetbauer, M. Zilker, S. Zoletnik12, H. Zohm 1 Max-Planck-Institut fr Plasmaphysik, 85748 Garching, Germany; CEA, Cadarache, France; 2

3 Tekes, Aalto University, Helsinki, Finland; FOM-Institute DIFFER, TEC, Nieuwegein, The Netherlands; 4 5 CFN, IST Lisbon, Portugal; CCFE Fusion Association, Culham Science Centre, UK; 6 7 C.R.E, ENEA Frascati, CP 65, 00044 Frascati (Rome), Italy; Forschungszentrum Jlich, Germany; 8 9 Institut Jean Lamour, UMR 7193 CNRS, Vandoeuvre, France;

CRPP, Lausanne, Switzerland; 10 11 W, University of Innsbruck, Austria; ENEA, IFP, CNR, Milano, Italy; 12 13 KFKI, HAS, Budapest, Hungary; Warsaw University of Technology, 00-661 Warsaw, Poland; 14 15 Technische Universiteit Eindhoven, The Netherlands; VR, Stockholm, Sweden; 16

17 IGVP, Universitt Stuttgart, Germany; University of Seville, Spain; 18 19 TEKES VTT, Espoo, Finland; DTU, Kgs. Lyngby, Denmark; 20 21 ERM/KMS, Brussels, Belgium; AW, IAP, TU Wien, Austria; 22 23 Hellenic Republic, Athen, Greece;

University of California, Davis, CA 95616, USA; 24 25 CIEMAT, Madrid, Spain; Consorzio RFX, ENEA, Padova, Italy; 26 27 DCU, University College Cork, Ireland; University of California, San Diego, CA 92110, USA; 28 29 Gwacheon, South Korea; University of Madison, Wisconsin, USA; 30

University of Nancy, France;

Recently Viewed Presentations

  • Philosophy of Mind - MIT ESP

    Philosophy of Mind - MIT ESP

    "You have been entrusted with the care and feeding of the most extraordinary and complex creation in the universe. Home to your mind and personality, your brain houses your cherished memories and future hopes.
  • The formation of the Canadian federal system (1840-1896)

    The formation of the Canadian federal system (1840-1896)

    In his report, Lord Durham suggested uniting the two colonies (Upper and Lower Canada) into one colony: The Province of Canada . After unification, the French Canadians would make up the minority of the colony's population, thereby making it easier...
  • 1 AILAMADA/ BAIIKLAMADA GELMELER Do. Dr. Gnay SAKA

    1 AILAMADA/ BAIIKLAMADA GELMELER Do. Dr. Gnay SAKA

    Daar, Senegal Yellow fever Japan BCG BCG LG Life Scences, Korea Hep B (recombinant) Merck - ABD MMR, Hib, rotavirus (oral, pentavalan) BB-NCIPD ltd. Bulgaria, Intervax Canada BCG, TT, DT, dt * BM kuruluşlarınca satın alınacak aşılar listesi, şubat 2009...
  • M IR CHURCH REBUILD 1450-80 DIMINISHED, OVERRATED PILGRIM

    M IR CHURCH REBUILD 1450-80 DIMINISHED, OVERRATED PILGRIM

    DON'T :-THE PAST ATTRIBUTION TO ECCLESIASTICAL FUNDING HAS BEEN GROSSLY SKEWED . AND EXAGGERATED. IRM. IRM. IONA CATHEDRAL IS CLAN DONALD'S LEGACY. ... Lord John II MacDonald greatly enlarges and enhances the Abbey church to Cathedral standard. He obviously used...
  • Famous Volcanic Eruptions Kilauea volcano on Hawaii -

    Famous Volcanic Eruptions Kilauea volcano on Hawaii -

    Pompeii in ruin with Mt. Vesuvius in the background A plaster cast of a dog killed by the pyroclastic material. Krakatau erupted in 1883, and produced what may have been the loudest noise ever heard by man. The extent of...
  • Image Processing Fundamentals

    Image Processing Fundamentals

    Short Time Fourier Transform (STFT) CS474/674 - Prof. Bebis (chapters 1 and 2 from Wavelet Tutorial posted on the web) Fourier Transform Fourier Transform reveals which frequency components are present in a given function. where: (inverse DFT) (forward DFT) Examples...
  • Igneous Rocks - Dillman&#x27;s Earth and Environmental Science

    Igneous Rocks - Dillman's Earth and Environmental Science

    Igneous Rocks. Magma is a slushy mix of molten rock, gases, and mineral crystals. The main compound in magma is silica (SiO2) Controls melting point and viscosity how well lava flows
  • Efficient Computing in the Post-Moore Era Per Stenstrm

    Efficient Computing in the Post-Moore Era Per Stenstrm

    MECCAs Approach - Interaction Across Layers. ISA + primitives . Resource Management. Microarchitecture. Parallel programming model plus semantic information . Parallelism Management. Task-based Dataflow Prog. Models. TaskA. TaskC. TaskB. #pragma css task output(a)