Liquids and Solids -

Liquids and Solids -

Unit 04: BONDING IB Topics 4 & 14 Text: Ch 8 (all except sections 4,5 & 8) Ch 9.1 & 9.5 Ch 10.1-10.7 My Name is Bond. Chemical Bond PART 1: Ionic & Covalent Bonding Chemical Bonds

A chemical bond is an attraction between 2 atoms or ions. Bonding occurs because it lowers the energy of the system. Three broad classifications: 1) Ionic 2) Covalent 3) Metallic Chemical Bonds Rule of thumb:

Ionic (Metal - Nonmetal) Covalent Metallic (Nonmetal Nonmetal) (Metal Metal) To understand why this rule of thumb generally works our, we need to revisit the concept of electronegativity.

Electronegativity The electronegativity scale was developed by Linus Pauling. Electronegativity: the power of an atom in a molecule to attract electrons to itself. 6 Linus Pauling (1901-1995) Structure of DNA (almost first) Nobel Prize in Chemistry 1954 Noble Peace Prize in 1962

Oranges, Vitamin C, and the common cold 7 The Pauling Scale of Electronegativity The Pauling scale was devised in 1932. Most electronegative element (F) = 4.00 Least electronegative element (Fr) = 0.7 These unitless values are determined by comparing the expected bond energies to the measured bond energies.

8 Electronegativity The greater an atoms electronegativity, the greater its ability to attract electrons. In a compound, the element with the greater electronegativity will be the more negative species. The element with lower electronegativity is sometimes referred to as the more electropositive element. This will become the more positive species in the bond.

9 e- A chemical bond is like a tug-of-war between two atoms, each competing for the electron. Electron tug-of-war analogy The stronger the team, the higher that teams

electronegativity. Atoms with higher electronegativity will have greater possession of the electron that is unequal sharing. 11 Electron tug-of-war analogy LOW Electronegativity

HIGH Electronegativity 12 Its a tie e- equal sharing covalent bond The non-metal is pulling harder... e-

So what would unequal sharing be? polar covalent The non-metal wins! e- Transfer of electrons ionic bond Ionic & Covalent Bonds: Some Generalizations o Ionic bonds exist between atoms with low

electronegativities & those with high electronegativities. In general, between metals and nonmetals. o Polar covalent bonds exist between dissimilar atoms with different electronegativities. o Nonpolar covalent bonds exist between identical nonmetallic atoms or nonmetallic atoms with similar electronegativities. 16 Atoms react with each other in chemical

reactions in a quest to have complete outer electron energy levels like the noble gases. Ne: 1s22s22p6 Ar: 1s22s22p63s23p6 Noble Gases ns2 np6 Very Stable 18

Octet Rule Atoms tend to gain, lose, or share electrons until they are surrounded by eight valence electrons. 19 Remember: The atom ate (8) until it was full. (LOL) Duet Rule

Hydrogen and lithium want to have 2 electrons. Recall that the first energy level only holds two electrons. 21 Ionic BondingDifferent texts report different cutoff values, but according to IB, EN > 1.8 for ionic bonds. 22

Caution! The idea of a pure ionic bond is an oversimplification, even if you consider species such as NaCl. If we wish to be more accurate, it is safer to refer to compounds as having a great deal of

ionic character. Zero Covalent Intermediate Polar Covalent Large Ionic

Covalent character decreases Bond Type Ionic character increases Electronegativity difference 24 While an electronegativity difference of about 1.8 is

the point where a bond may be thought of as ionic, there are a few exceptions to this rule such as HF, in which the electronegativity difference is 1.9, but the molecular properties are decidedly covalent. 25 Only a rule of of thumb: Covalent bond = non-metal + non-metal Ionic bond = metal + non-metal It's easy to see that this rule is only a rough approximation and works well for compounds of the Group 1 or 2 metals with the halogens. But it doesn't reflect reality when we consider bonds between carbon and most metals. Carbon is certainly a non-metal, but it forms covalent bonds

(sometimes highly polar, but covalent none the less) with almost all of the elements on the periodic table 26 For our purposes in this class, however, we will make some generalizations to simplify our understanding 27 The greater the difference in electronegativity

between the atoms, the more ionic the bond. 28 Ionic Bonding Ionic bonds form between metals on the left of the periodic table and elements in groups 5, 6 & 7 (or polyatomic ions attracted to other ions)

Note: group 4 elements (C and Si) do not form ionic bonds. They tend to form giant molecular structures (network solids) or simple molecules. Example: NaCl Sodium (Na) has 11 electrons 1s22s22p63s1 but only one valence electron. By losing this electron Na becomes Na+ 1s22s22p6 or [Ne] Which has a full outer shell. 30

Example: NaCl Chlorine (Cl) has 17 electrons (7 valence electrons) 1s22s22p63s23p5 By gaining an electron it becomes... Cl1s22s22p63s23p6 or [Ar] Which also has a filled outer shell. 31 NaCl An ionic bond results: electrostatic attractions between two oppositely charged ions.

Na+ Cl32 NaCl These two ions do not exist in isolation. NaCl is simply the formula unit, a representation of the ration of cation:anion in the ionic lattice structure. 2-D

3-D 33 NaCl In 3-dimentional cubic NaCl, each Na+ is surrounded by 6 Cl- ions, and vice versa. 34 Examples of Ions Group

# Ex. Number valence es Number es transferred es lost or gained

Charge of ion formed Type of element 1 Na 1

1 lost +1 metal 2 Ca 2

2 lost +2 metal 3 Al 3

3 lost +3 metal 4 C 4

- - - nonmetal 5 P 5

3 -3 nonmetal 6 O 6 2

-2 nonmetal 7 Br 7 1 gaine d

gaine d gaine d -1 nonmetal Polyatomic Ions: Ions containing more than one element In ions formed from more than one

element the charge is often spread (delocalized) over the whole ion. Polyatomic Ions: Ions containing more than one element Cation example: ammonium, NH4+ All four of the N-H bonds are identical; +1 charge is distributed evenly throughout the ion Polyatomic anions are sometimes known as

acid radicals formed when an acid loses one or more H+ ions. Anion examples: Ion name Hydroxide Nitrate Sulfate Hydrogen sulfate (a.k.a. bisulfate) Carbonate Hydrogen carbonate (a.k.a. bicarbonate) Ethanoate (a.k.a. acetate)

Formula OHNO3SO42HSO4CO32HCO3CH3COO- From Water (H2O) Nitric acid (HNO3) Sulfuric acid (H2SO4) Sulfuric acid (H2SO4) Carbonic acid (H2CO3) Carbonic acid (H2CO3) From ethanoic acid (vinegar), or acetic acid (CH3COOH)

Formulas of Ionic Compounds: Lowest ratio of cation to anion that results in a net charge of zero. Examples: Copper (II) sulfate = Cu2+

Sodium oxide = Na+ SO42- O2- CuSO4 Na2O Magnesium phosphate =

Mg2+ PO43- Mg3(PO4)2 Covalent Bonding sharing of one or more pairs of electrons to achieve inert gas configuration. 40

Covalent Bonding Single covalent bonds: two shared electrons (a single pair) Multiple covalent bonds: Double bonds: 4 shared electrons (two pairs) Triple bonds: 6 shared electrons (three pairs) 41

Covalent Bonding Coordinate (dative) covalent bonds: formed when both electrons of the shared pair of electrons originate from the same atom. Example: carbon monoxide (CO) C

O coordinate bond 42 Lewis Structures: (a.k.a. electron dot structures) show all valence electrons Examples: All of the following are

acceptable ways of representing the diatomic fluorine molecule. 43 Steps for Writing Lewis Structures: 1. Sum the valence electrons from all the atoms present in the compound. Dont worry about keeping track of which electrons come from which atom. It is the total number of electrons that is important. CH4: 8 total valence electrons

44 Steps for Writing Lewis Structures: 2. Draw a skeletal structure. Use a pair of electrons to form a bond between each pair of bound atoms. Hint #1: The atom with the smallest electronegativity is usually the central atom (H2O is a notable exception). COCl2

Electronegativities C = 2.5 O = 3.5 Cl = 3.0 45 Steps for Writing Lewis Structures: 2. Draw a skeletal structure. Use a pair of electrons to form a bond between each pair of bound atoms.

Hint #2: Polyatomic species are usually clumped and not spread out. SO2F2 O FS-F O X FOSO-F 46

Steps for Writing Lewis Structures: 3. Arrange the remaining electrons to satisfy the duet rule for H and the octet rule for the second-row elements. CH3Cl . : Cl . : H C H H

47 Steps for Writing Lewis Structures: 5. If electrons remain after the octet rule has been satisfied, then place them on the elements having available d orbitals (elements in Period 3 or beyond, often the central atom). 48 Lewis Structures: Comments about the Octet Rule

The second-row elements C, N, O and F should always obey the octet rule. F N C O Lewis Structures: Comments about the Octet Rule

The second-row elements B and Be often have fewer than eight electrons around them in their compounds. These electron-deficient compounds are very reactive. Lewis Structures: Comments about the Octet Rule The second-row elements never exceed the octet rule, since their valence orbitals (2s and 2p) can accommodate only eight

electrons. Lewis Structures: Comments about the Octet Rule Third-row and heavier elements often satisfy the octet rule but can exceed the octet rule by using their empty valence d orbitals.

Recently Viewed Presentations

  • Data Modeling - Temple MIS

    Data Modeling - Temple MIS

    Data Transformation Steps. Parsing. Decomposes data elements. Standardizing. Transforms data into its preferred format. Matching. Matches records within and across data sources
  • Missional Interpretatio n of Scripture Missional Theology Movement

    Missional Interpretatio n of Scripture Missional Theology Movement

    It is especially obvious in the NT as NT authors use OT texts to describe how one lives "in Christ" The process is important because the process itself is application and thus shows us how to missionally apply biblical texts...
  • Maplewood Baptist ChurchFoundedSeptember 16, 1992

    Maplewood Baptist ChurchFoundedSeptember 16, 1992

    Maplewood baptist church. God answered prayer and poured His blessings upon Maplewood when he sent the following three men of God to guide them through their early beginning…. Rev. Fred Reece. Rev. Fred Reece and his wife, Jean, served April...
  • Geen diatitel - Centers for Disease Control and Prevention

    Geen diatitel - Centers for Disease Control and Prevention

    Data Dictionary International Classification of External Causes of Injuries ICECI Version 1.0 International Classification of External Causes of Injuries
  • Macbeth: Essay Question - Weebly

    Macbeth: Essay Question - Weebly

    Macbeth: Essay Question ... She states very clearly that he could be great and she asks to be 'unsexed' to help her husband achieve his greatest ambition. Though she is misguided, she is trying to make her husband's dreams a...
  • NEW ZEALAND | Investment Briefing 2016 IS THE

    NEW ZEALAND | Investment Briefing 2016 IS THE

    but only the hedge funds were able to take advantage of that. A simplified exampleso how did it all work out? The active long-only managers were 0.4% overweight ABC on average. So as a group they lost 0.2% on the...
  • Wireless Communications and Networks

    Wireless Communications and Networks

    Introduction Chapter 1 Wireless Comes of Age Guglielmo Marconi invented the wireless telegraph in 1896 Communication by encoding alphanumeric characters in analog signal Sent telegraphic signals across the Atlantic Ocean Communications satellites launched in 1960s Advances in wireless technology Radio,...
  • Geography -

    Geography -

    5th Paragraph - Conclusion Paragraph - Must include thesis statement again and a full circle ending. Research. Paragraph 2: Province or Territory's Physical Geography (location, region, landforms, bodies of water, climate or vegetation, ...