Flowers Pollination syndromes among the phloxes Butterfly and

Flowers Pollination syndromes among the phloxes  Butterfly and

Flowers Pollination syndromes among the phloxes

Butterfly and Moth Pollination Butterfly and moth flowers similar to bee flowers because moths and butterflies also guided to flowers by combination of sight and smell

Some butterflies can see red, so often have red or orange color for flower Nectary is often at bottom of long, slender corolla tube or a nectar spur - only accessible to long sucking probocis of

moths and butterflies Nectar is copious, but not so concentrated - often 25% sugar Moths are nocturnal so many of their flowers emit heavy fragrance at night, often pale or white in color - scent is sweet

and penetrating Erysimum butterfly pollinated

Episcia moth pollinated Bird Pollination Bird pollinated flowers produce copious, thin nectar - often

about 25% sugar, often very high in sucrose - may actually drip with nectar Usually have little odor because birds have poor sense of smell Birds see red and bird pollinated flowers often very colorful with reds and yellows - red columbine, fuchsia, passion flower,

hibicus, poinsettia, many cactus and orchids The flowers are usually large or part of large inflorescence Nectar usually held in long tubes that other animals cant reach

Hummingbird pollination Ipomopsis aggregata hummingbird pollinated

Greater double-collared sunbird Proteus pollinated by perching birds

Bat Pollination About 250 species of bat (25% of all bats) include some pollen, nectar or fruit in their diet - many pollinate flowers as part of their feeding

Bat flowers are similar to bird flowers - large, strong flower which produces copious nectar - Often dull colored because open at night - may only open at night Often have very strong fermenting or fruitlike odors, may be

musky odors too Bat flowers often hang down below foliage to enable bats to easily get to the flower Banana, mango, sisal and kapok flowers pollinated by bats

Bat pollination Wind Pollination Usually have dull colors, relatively odorless, do not produce nectar, petals

small or absent, sexes often separated Wind pollinated flowers are most common in temperate areas where large stands of single species of plant occur With trees, wind pollination occurs in spring before leaves have emerged usually have well exposed stamens to shed pollen to wind and stigma also

exposed - often with feathery outgrowths to catch pollen Often the plants have various mechanisms to promote out-crossing - separate sexes - dioecious - willows, poplars unisexual flowers on same tree - monoecious - oaks, birches

Self-incompatible - grasses Flowers are typically small, have single ovule per flower - however have many flowers borne in inflorescences and multiple inflorescences

Box elder wind pollinated female left, male right Wild Oats Avena fatua

Wild oat flower close up Cottonwood Catkins Male

Female Why Pollination?

Why Pollination? Plants engage in pollination in order to ensure successful sexual reproduction Then Why Sex?

The benefits of sexual reproduction are that it enables the introduction of novel genetic combinations of DNA This creates potential for plants to develop new genetic combinations which may allow increased survival,

reproduction and thus fitness producing more offspring Sexual reproduction introduces

variation via three steps: 1. meiosis forms haploid cells with different combinations of chromosomes 2. genetic recombination occurs during

meiosis via crossing over 3. fusion of gametes (eggs and sperm) from haploid cells to form new zygote Pollination in Plant Breeding

Double Fertilization At double fertilization, several processes are initiated:

the primary endosperm nucleus divides forming the endosperm; the zygote develops into the embryo; the integuments develop into the seed coat;

the ovary and related structures develop into the fruit Embryo Development

Early embryo development is similar in dicots and monocots - at first the embryo is a spherical body - however, differences appear when the cotyledons develop - the

dicot has two cotyledons and the monocot has one cotyledon Endosperm and Cotyledons

The primary endosperm nucleus divides mitotically to form the endosperm - the endosperm tissue will provide food to the developing embryo and in many cases, to the young seedling too In many dicots and some monocots, the endosperm

tissues are absorbed by the developing embryo before the seed becomes dormant - then the nutrition is stored in the cotyledons - peas, beans

Gymnosperm Seeds In gymnosperms like this pine, the food for the seed comes from maternal tissue (the gametophyte)

Ovary and Ovule Development As the ovule develops into the seed, the ovary develops into the fruit

As this happens the ovary wall thickens to form a pericarp - the pericarp often has distinct layers - exocarp, mesocarp and endocarp or just exocarp and endocarp - the

layers are easiest to see on fleshy fruits Fruit Layers 1. Endocarp

2. Seed 3. Mesocarp 4. Exocarp 1, 3, and 4 together make up the pericarp.

Fruits A fruit may be defined as a matured ovary. In some plants the fruit may include other flower parts

that are fused to the ovary. True fruits develop from a single pistil. A flower with one or more simple pistils produces a corresponding number of fruits. A compound pistil develops into one fruit

but may split at maturity into a number of pieces that often corresponds to the number of carpels in the pistil (like a blackberry or pineapple).

Note: D should be Samara; E should be Achene

Note missing Pepo and hesperidium Apples and Pears

Strawberry flower and fruit Seed Dispersal

Seed Dispersal Distances Animal Seed Dispersal Shimba Hills, Kenya

Seed Dispersal by Wind Seed Dispersal by Water - Coconut

Seed Dispersal by Self Poppy shaking in breeze

Explosive Hitch-hiking

Human Seed Dispersal Limiting Seed Dispersal In violets there are two kinds of flowers:

chasmogamous flowers that open in the normal way and are insect pollinated - these seeds disperse far away closed cleistogamous flowers that never open and reproduce by selfing - these seeds never

disperse very far - the cleistogamous flowers form later in the summer Violet

flower types More limits to Dispersal

Peanuts limit their dispersal even further because their cleistogamous seeds are produced by underground flowers - these are called amphicarpic flowers and seeds these seeds clearly dont disperse

Peanut Amphicarpic Seeds Dispersal by Clonal Growth

Black Locust

Recently Viewed Presentations

  • Creating a Student Centered Math Classroom

    Creating a Student Centered Math Classroom

    Why Student Centered Math? "In the past, I taught my math lessons as an entirely "whole-class" event. I found myself at the front of the classroom teaching while my students sat at their desks trying to understand the new concepts.
  • GIS 5306 GIS in Environmental Systems - CLAS Users

    GIS 5306 GIS in Environmental Systems - CLAS Users

    Distribution of Species - Main Points. Individuals of each species have ecological requirements and limits that, along with historical factors, determine distribution. Physical environmental factors create gradients of tolerance and optimality for organisms. E.g. water, light, pH, temperature, salinity, etc.
  • Signal Words of Present Perfect -

    Signal Words of Present Perfect -

    Signal Words of Present Perfect. already, ever, just, never, yet, for , since. GRAMMAR UNIT 5
  • Engineering Education Board - Baja SAE

    Engineering Education Board - Baja SAE

    (i.e. CNC an upright in less then one minute. That works if you are making it out of wood. However if you are using baja functional material, you need to be able to support the cutting, finishing, etc) If your...
  • Pressure and Moments Pressure - In solids If

    Pressure and Moments Pressure - In solids If

    Pressure and Moments Pressure - In solids If a force is applied over a smaller surface area you get a larger pressure. Pressure can be calculated using the following equation: Newtons N Pascals or N/m2 m2 Pressure increases with depth.
  • Sir Isaac - Brigham Young University

    Sir Isaac - Brigham Young University

    Sir Isaac Newton "Nature and Nature's laws lay hid in night God said 'Let Newton be!' And all was light." - Alexander Pope His Formative Years Born on December 25, 1642 (January 4, 1643) in Woolsthorpe, Lincolnshire, England Raised by...
  • III. Periodic Trends

    III. Periodic Trends

    Periodic Trends (p. 140 - 154) Ch. 5 - The Periodic Table A. Periodic Law When elements are arranged in order of increasing atomic #, elements with similar properties appear at regular intervals. B. Chemical Reactivity Families Similar valence e-...
  • LIVING WITH DEMENTIA Healthcare Assistant Conference 16 September

    LIVING WITH DEMENTIA Healthcare Assistant Conference 16 September

    What is Dementia . Dementia is a general term for loss of memory and other mental abilities severe enough to interfere with daily life. It is caused by physical changes in the brain.