Periodic Trends - Tina's Science Class

Periodic Trends - Tina's Science Class

18 1 H 11 He H 1 2 15 16 17 He 2 Li 3 Be 4 N 7 O 8 F 9 Ne 10 Na 11 Mg 12 P 15 S 16 Cl 17 Ar 18 13 14 Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Ga Ge As Se Br Kr Rb Sr In Sn Sb Te I Xe K 19 Ca 20 As 33 Se 34 Br 35 Kr 36 Cs Ba Th Pb Bi Po At Rn Rb Sr 37 38 Sb 51 Te 52 I 53 Xe 54 Fr

Ra Cs 55 Ba 56 Bi 83 Po 84 At 85 Rn 86 Fr 87 Ra 88 22 7 13 8 14 915 10 16 11 17 12 18 Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen FluorineNeon Sodium Magnesium Aluminum Silicon Phosphorous Sulfur Chlorine Argon Potassium Calcium Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium Indium Tin Antimony Tellurium Iodine Xenon Cesium Barium Thallium Lead BismuthPolonium AstatineRadon Francium Radium Instructions: In this activity, you will need to create a 3-dimensional periodic table showing a trend of the periodic table. Examples of trends: atomic radius, ionic radius, electronegativity, electron affinity, density, melting point, boiling point, atomic mass, 1 st ionization energy, etc Trend ____________________________ 1 2 13 14 15 16 17 18 1 2 7 8 9 10 11 12 Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen FluorineNeon Sodium Magnesium Aluminum Silicon Phosphorous Sulfur Chlorine Argon Potassium Calcium Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium Indium Tin Antimony Tellurium Iodine Xenon Cesium Barium Thallium Lead BismuthPolonium AstatineRadon Francium Radium Scale 1 cm = __________ Definition of trend: H __________________________________________________ Li Be B C N O F Ne __________________________________________________ Na Mg Al Si P S Cl Ar

__________________________________________________ K Ca Ga Ge As Se Br Kr __________________________________________________ Rb Sr In Sn Sb Te I Xe Cs Ba Th Pb Bi Po At Rn Fr Ra Name(s)___________________________________________ __________________________________________________ __________________________________________________ He H He H He Li Be B C N O F Ne Li Be B C N O F Ne Na Mg Al Si P S Cl Ar Na Mg Al Si P S Cl Ar K Ca Ga Ge As Se Br Kr K Ca Ga Ge As Se Br Kr Rb Sr In Sn Sb Te

I Xe Rb Sr In Sn Sb Te I Xe Cs Ba Th Pb Bi Po At Rn Cs Ba Th Pb Bi Po At Rn Fr Ra Fr Ra Cut on lines to fit in Corning 96-well microplates. H Developed by Jeff Christopherson He H He Li Be B C N O F Ne Li Be B C N O F Ne Na Mg Al Si P S Cl Ar Na Mg Al Si P S Cl Ar K Ca Ga Ge As Se Br Kr K Ca Ga Ge As Se Br Kr Rb Sr In Sn Sb Te

I Xe Rb Sr In Sn Sb Te I Xe Cs Ba Th Pb Bi Po At Rn Cs Ba Th Pb Bi Po At Rn Fr Ra Fr Ra Plotting Trends A Periodic Table Activity Introduction Does ionization energy increase going up or down a column in the periodic table? Do atoms get smaller or larger from right to left across a row? Most students have a hard time answering these questions. In this cooperative activity, students use microscale reaction plates and straws of different lengths to construct three-dimensional bar-type charts of element properties. Lets students discover for themselves the existence and direction of periodic trends. Concepts Periodic table Periodic trends Materials Calculator, at least 1 per student group Straws (300) Index cards, 4 x 6 inches (7) Scissors, at least 1 per student group Reaction plates, 96-well (8 x 12 layout), 7 Metric rulers, marked in millimeters (28) Periodic table, (28) Procedure 1. Form a working group with three other students. 2. Obtain a periodic table, a reaction plate, a metric ruler, scissors, and 40 plastic straws. 3. Each group chooses or is assigned one element property: atomic mass, atomic radius, ionization energy, electronegativity, electron affinity, density, or melting point. 4. Find your assigned physical property on the periodic table. 5. Find the maximum value of the assigned physical property for the elements 1-20, 31-38, and 49-54 (these are the representative or main group elements in periods #1-5). Example: The maximum value of the density for these elements is 7.31 g/cm 3 (for tin). 6. Let the length of the staw minus one cm represent this maximum value. This length will be the scale for all the other values of the density of the elements. Example: For a straw that is 19.5 cm long, a straw length of 18.5 cm will represent a density of 7.31 g/cm 3. This scale is thus 18.5 cm = 6.31 g/cm 3. Round off straw length to 0.1 cm (1 mm). 7. Use this "straw" scale as a ratio, calculate the straw length that is needed to represent the assigned property for each element in the list. Example: The density of beryllium is 1.85 g/cm 3. Solving Equation 1 for the straw length (sl) shows that a straw length of 4.7 cm is needed to represent the density of beryllium. Round off all straw lengths to 0.1 cm. 18.5 cm = 7.31 g/cm3 sl 1.85 g/cm3 sl = (18.5 x 1.85) / 7.31 = 4.7 cm 8. Add 1.0 cm to the calculated straw length for each element and cut a straw to that length. Example: Cut a straw 5.7 cm (4.7 cm + 1.0 cm) long to represent beryllium. Procedure 9. Place the straw in the reaction plate according to the position of the element in the periodic table. Remember, the transition elements are not included in the list of representative elements. Example: Beryllium (period 2, Group 2 is placed in row 2, column 2). 10. Repeat steps 6-9 for each element in the list. 11. Determine the nature of any periodic trend that may exist for the assigned property of the elements and propose an explanation for the observed trend. 12. Create a descriptive card to be displayed with the three-dimensional chart. Include the following information on the card: (1) names of group members; (2) the assigned physical property of the element; (3) description of the observed trend; (4) proposed explanation for the trend. Tips 1. If the periodic tables you have available do not list all of the suggested physical properties, compile a list of the elements and their properties. An appropriate reference source is the CRC Handbook of of Chemistry and Physics. See also the Website www.webelements.com. 2. A large quantity of straws may be available from a local restaurant - ask them to support science activities. 3. This activity require 1 full class period. Printable copy of LAB Flinn ChemTopic Labs, Volume 4, The Periodic Table; Cesa, I., Ed,; Flinn Scientific: Batavia, IL, 2002, Printable copy of DATA Interactive Periodic Table Melting Points 1 H Mg

-259.2 2 3 4 5 Li Be 180.5 1283 > 3000 C o Na Mg -269.7 B 2000 - 3000 C Al 650 K Ca Sc 63.2 850 1423 1677 1917 1900 1244 1539 1495 1455 1083 420 Rb Sr 770 660 Y 710 V Cr Mn Fe Co Ni Cu Zn Zr Nb Mo Tc Ru Rh Pd Ag Cd 1500 1852 2487 2610 2127 2427 1966 1550 961 Cs Ba La 28.6 Ti 920 Hf Ta W Re Os Ir C N O 321 Pt Au Hg Si P Ne 1423 44.2 Ga Ge As 29.78 960 In 817 S Cl Ar 119 -101 -189.6 Se Br Kr 217.4 -7.2 -157.2 Sn Sb Te 156.2 231.9 630.5 450 Tl Pb I Xe 113.6 -111.9 Bi Po At 2222 2997 3380 3180 2727 2454 1769 1063 -38.9 303.6 327.4 271.3 254 Ralph A. Burns, Fundamentals of Chemistry , 1999, page 1999 F 2027 4100 -210.1 -218.8 -219.6 -248.6 o 98 38.8 6 650 He Symbol Melting point oC Rn -71 1 Densities of Elements H He 0.071 2 3 4

Li Be B C N O F Ne 0.53 1.8 2.5 2.26 0.81 1.14 1.11 1.204 Na Mg Al Si 0.97 2.70 2.4 K 0.86 5 1.74 Ca Sc Ti 1.55 V Cr 7.1 Mn Fe Co Ni Cu Zn Ga Ge As Se Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 5.51 6.4 8.4 10.2 11.5 12.5 7.3 Cs Ba La Hf Ta W Re Os Ir Pt Au 1.90 13.1 16.6 19.3 21.4 22.48 22.4 21.45 19.3 3.5 6.7 8.0 11.9 g/cm3 Mg 1.74 W 8.9 1.82w 2.07 5.96 2.6 7.86 S 4.5 Rb Sr 7.4 P (2.5) 1.53 6 0.126 12.5 8.90 12.0 8.92 10.5 7.14 8.6 Hg 5.91 7.3 Tl 5.36 5,7 6.7

Pb Bi 13.55 11.85 11.34 9.8 12.0 17.9 g/cm3 4.7 6.1 Ar 1.557 1.402 Br Kr 3.119 2.6 I Xe 4.93 3.06 Po At Rn 9.4 4.4 > 18.0 g/cm3 Symbol Density in g/cm3C, for gases, in g/L Cl --- Electronegativities 1A 1 Period 2 3 H 2.1 2A 3A 4A 5A 6A 7A Li Be B C N O F 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Al Si P S Cl 1.5 1.8 2.1 2.5 3.0 Na Mg 4B 5B 6B 7B K Ca Sc Ti V Cr Mn Fe Co Ni 0.8 1.0 1.3 1.5 1.6 1.6 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 0.8 1.2 1.4 1.6 1.8 1.9 2.2 1.8 Cs Ba

La* 6 Hf Ta W 0.7 0.9 1.1 1.3 1.5 1.7 7 Fr Ra Ac 0.7 0.9 1.2 1.0 1.5 8B 1.8 1.8 1B 2B 3B 0.9 4 8A 1.8 Cu Zn Ga Ge As Se Br 1.9 1.7 2.0 Ir Pt Au Hg Tl Pb Bi Po At 1.9 2.2 2.2 2.4 1.8 2.0 y 1.1 I Re Os 1.9 2.1 2.8 1.9 1.8 1.9 2.4 2.2 1.9 1.7 1.8 2.2 2.2 1.7 1.6 * Lanthanides: 1.1 - 1.3 yActinides: 1.3 - 1.5 Hill, Petrucci, General Chemistry An Integrated Approach 2nd Edition, page 373 Below 1.0 2.0 - 2.4 1.0 - 1.4 2.5 - 2.9 1.5 - 1.9 3.0 - 4.0 2.5 2.2 Atomic Ionic Radii Radii IA IIA IIIA IVA VA VIA Li1+ Li Be2+ Be B C NN3- OO2- F1F 1.52 0.60

1.11 0.31 0.88 0.77 0.70 1.71 0.66 1.40 0.64 1.36 1+ Na Na Mg2+ Mg Al3+ Al Si P 2SS 1ClCl 1.43 0.50 1.17 1.10 1.04 1.84 0.99 1.81 1.86 0.95 K K1+ 2.31 1.33 Rb Rb1+ 2.44 1.48 Cs 1+ Cs 2.62 1.69 1.60 0.65 Ca Ca2+ 1.97 0.99 Sr Sr2+ 2.15 1.13 Ba 2+ Ba 2.17 1.35 VIIA Ga Ga3+ Ge As 2SeSe 1Br Br 1.22 0.62 1.22 1.21 1.17 1.98 1.14 1.85 In3+ In Sn Sb 2TeTe 1.62 0.81 1.40 1.41 Tl3+ Tl Pb Bi 1.71 0.95 1.75 1.46 1.37 2.21 II11.33 2.16 = 1 Angstrom Atomic Radii IA IIIA IVA VA VIA Be B C N O F 1.52 1.11 0.88 0.77 0.70

0.66 0.64 Na Mg Al P S Cl 1.10 1.04 0.99 Li 1.86 IIA 1.60 1.43 Si 1.17 VIIA K Ca Ga Ge As Se Br 2.31 1.97 1.22 1.22 1.21 1.17 1.14 Rb Sr In Sn Sb Te I 2.44 2.15 1.62 1.40 1.41 1.37 1.33 Cs Ba Tl Pb Bi 2.62 2.17 1.71 1.75 1.46 = 1 Angstrom Ionization Energies 18 Group 1 1 Period 2 3 4 H 6 7 Symbol 738 First Ionization Energy (kJ/mol) 13 14 15 16 17 B C N O F 1312 2 Li Be 520 900 801 1086 1402 1314 1681 2081 Na Mg

Al Si 578 787 Ti V 590 633 659 651 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 403 652 684 702 710 709 Cs Ba 600 640 La* Hf Ta W Re Os 376 503 538 761 770 760 Fr Ra Ac Rf -- 550 659 y 509 490 -- * Lanthanide series y Actinide series 7 9 10 11 12 Ca Sc K 3 8 S 5 738 6 P 4 496 419 5 He Mg Cl 2372 Ne Ar 1012 1000 1251 1521 Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 653 746 1140 1351 717 762 839 760 737 906 868 579 558 762 947 Xe 804 731

Ir Pt Au Hg Tl Pb Bi Po At Rn 878 868 890 716 812 1038 703 869 I 720 1007 589 834 941 Kr 1008 1170 -- Db Sg Bh Hs Mt Ds Uuu Uub Uut Uuq Uup -- -- Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 534 533 536 597 U Np Pu Am Cm Bk Cf Es Fm Md No Lr 600 619 -- -- 527 Th Pa 587 570 -- 598 -- -- 545 585 -- 547 578 -- 592 581 -- 566 601 -- 573 608 -- Uuo 581 589 627 635 603 642 523 -- Nuclear charge increases Shielding increases Atomic radius increases Ionic size increases Ionization energy decreases Electronegativity decreases Summary of Periodic Trends Shielding is constant Atomic radius decreases Ionization energy increases Electronegativity increases Nuclear charge increases 1A 0 2A Ionic size (cations) decreases 3A 4A 5A 6A 7A Ionic size (anions) decreases 1 2 3 Hydrogen Halogens Alkali metals Noble Gases

Alkaline Earth Metals Other Nonmetals Coinage Metals Lanthanides H Other Transition Elements Actinides 1 Metalloids (B, Si, Ge, As, Sb, Te, At) Other metals Be B C N O F Ne 3 4 5 6 7 8 9 10 Al Si P S Cl Ar 13 14 15 16 17 18 Cu Zn Ga Ge As Se Br Kr Na Mg K 19 5 7 12 Ca Sc Ti V Cr 24 Mn Fe Co Ni 20 21 22 23 Rb Sr Y Zr Nb Mo Tc 39 40 41 42 Hf Ta W 72 73 74 Rf Db Sg Bh Hs Mt 104 105 37 6 2 Li 11 4 He 38 Cs Ba 55 56 Fr Ra 87 88 * W 106

La Ce Pr 25 43 26 107 28 29 30 31 Ru Rh Pd Ag Cd In 44 Re Os 75 27 76 108 45 46 Ir Pt 77 78 47 48 49 Au Hg Tl 79 80 81 32 33 34 Sn Sb Te 50 51 Pb Bi 82 83 52 35 36 I Xe 53 54 Po At 84 85 Rn 86 109 Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu * 57 58 59 Ac Th Pa 60 U 61 62 63 64 65 66 Np Pu Am Cm Bk Cf 67 68 69 70 71 Es Fm Md No Lr W 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Recently Viewed Presentations

  • Sensation and Perception - ednet.ns.ca

    Sensation and Perception - ednet.ns.ca

    Sensation and Perception. PLAYLIST. Sensation. Sensation is the process by which we receive information from the environment. ... Transduction is the process of converting energy of a stimulus into neural activity. The stimulus is recoded as a neural pattern.
  • Religious Experimentation Brings More Diversity

    Religious Experimentation Brings More Diversity

    Religious Experimentation Brings More Diversity Chapter 7 I. Revisiting the Bible: Restoration During the early years of the 19th century, a primary impetus among new religious movements was a re-imagining, or really a "return", to the original sense and meaning...
  • Tittel - KoRus

    Tittel - KoRus

    Recovery Helsedirektoratet, 2012, ROP-retningslinjen, anbef. 37: …Et helhetlig perspektiv med mål om å finne pasientens egne ressurser når det gjelder meningsfylt aktivitet, få jobb, øke det sosiale nettverket, løse økonomiske og boligmessige behov, for å øke livskvalitet og selvfølelse.
  • Iteration (Kamin et al. Ch. 6) - Colorado State University

    Iteration (Kamin et al. Ch. 6) - Colorado State University

    Bitwise Operators CS163 Fall 2018 Java Bitwise Operators Symbol Operator & Bitwise AND | Bitwise OR ^ Bitwise XOR ~ Bitwise NOT << LEFT SHIFT >> RIGHT SHIFT CS 160 ...
  • Webinar Title

    Webinar Title

    8. Observing workers working with clients cannot answer questions about factors which lead to stress e.g. fatigue, emotional pressures, anxiety, workload, decision making violence and aggression, bullying, 9. Observing what workers are doing tends to blame the worker, even if...
  • Background - United States Fish and Wildlife Service

    Background - United States Fish and Wildlife Service

    Two of the three final rules that we will discuss today are intended to address the Services' collective experience of more than 40 years of implementing the ESA. The third final rule is a Fish and Wildlife Service only rulemaking,...
  • Whose Future Is It? - RIC | RIC | Home

    Whose Future Is It? - RIC | RIC | Home

    What is Student-Directed? The student is the primary audience for the materials and is responsible for moving through the materials; The key to student-directed is that the student retains control over his or her learning process, even when others (teachers,...
  • Capital Cities - Florida Building

    Capital Cities - Florida Building

    Disclaimer. This material is intended to give the reader only general factual information/training current at the time of publication. The subject areas of this presentation are not a substitute for the Florida Building Code and should not be used for...