Density Functional Theory Studies of Candidate Carbon Capture

Density Functional Theory Studies of Candidate Carbon Capture

Density Functional Theory Studies of Candidate Carbon Capture Materials OMS-2 and Cu-BTC Eric Cockayne NIST Thanks to Eric B. Nelson, Boise State University Lan Li, Boise State University Winnie Wong-Ng, NIST Laura Espinal, NIST Andrew Allen, NIST

Motivation CCS (Carbon Capture and Sequestration) Step 1- Gas Production Step 2- CO2 Capture Step 3- CO2 Transportation Step 4- CO2 Injection Current Technologies Amine Scrubbing

Increase Costs to Plants by ~30% Increase Electricity Costs by 6080% 3 The Need for New Materials CO2 removal using solid sorbents Sorbents may be recycled

by either a temperatu re or a pressure cycle New Materials and Designs Needed Low Energy Costs Introduction into Existing Technology Espinal et al., MRS Bulletin 37, 431 (2012).

Nanoporous solids show great promise. [3] 4 Nanoporous materials predicted to have lower energy costs in a carbon capture and removal cycle than liquid amines Lin et al., Nature Mater. 11, 633 (2012). Nanoporous materials: Many are already known

Many more hypothetical structures Possibilities for both designing new nanoporous materials and tuning the properties of existing ones. Geometry Size, shape and dimensionality of pores and tunnels Chemistry Ionic substitution to control sorbate-framework interaction Change ligands in metal-organic frameworks to achieve the above goals Outline Can we use density functional theory to

guide the design of nanoporous materials for carbon capture? a-MnO2: can we control the hysteresis of carbon-dioxide sorption? Cu-BTC: can we solve the problem that water absorption reduces the CO2 uptake? Advice to a DFT novice studying nanoporous solids Use PBEsol pseudopotentials Goldilocks between LDA & PBE GGA

Use a Hubbard U parameter for magnetic ions Fit U by fitting bandgap of known simpler system. Set up antiferromagnetic structure if possible Include van der Waals forces at an empirical level, e.g. Grimmes formulation Fully ab-initio vdW computationally expensive

If studying H2O sorption, use meta-GGA, nd a-MnO2: Hysteresis control? MnO2: Many allotropes b-MnO2 (a) most stable a-MnO2 (c) a.k.a. OMS-2 (octahedral molecular sieve) 2x2 pores Cations in tunnels

K (cryptomelane); Ba (hollandite); Na, Mg, Ca, Cu, Fe, Al (etc.) Other MnO2 OMS structures (b;d) Different mxn pore sizes Geometry and chemistry Can be changed. Experiment: a-MnO2 only stabilized in presence of additional species such as K+. Above calculations of most stable location of K+ in the two compounds For b-MnO2, the tunnels are too small to easily accommodate K+

For a-MnO2, the tunnels easily accommodate K+. DFT Calculations show that a-KxMnO2 is stabilized for x > 0.002, consistent with experiments. Cockayne and Li, Chem. Phys. Lett. 544, 53 (2012). (Antiferro-) Magnetism of MnO2 (a) Experimental magnetic state of b-MnO2. Experimental volume and bandgap are reproduced for U = 2.8 eV and J = 1.2 eV. (b) Predicted ground state magnetic structure of a-MnO2. a-MnO2: Hysteresis control?

Experimental Observations N2 and CO2 adsorption and desorption isotherms at T = 303 K using 15 min equilibration time for OMS-2. Solid and open symbols represent adsorption and desorption points, respectively. Sorption Hysteresis: a path to adsorption of gas molecules by porous host differs from that of desorption. The width of the hysteresis loop is time- and pressuredependent. Scanning pressure curves using 5 min dwell time at 303 K, The dotted line represents a common adsorption curve while the colored solid lines are desorption curves

after reaching different maximum pressures on the adsorption branch. Espinal et al., JACS, 134, 7944, 2012 Critical pressure of 7 bar before hysteresis occurs Espinal et al., J AC A 134, 7944 (2012). Ratchet model

Gatekeeper model Possible CO2 sorption mechanisms by OMS-2. a. Perspective view of a single tunnel of OMS-2 (front view) showing the cation inside the tunnel: For clarity, translucid yellow walls are shown to highlight the location of the octahedrally coordinated Mn b-g, Schematic representation of the cross-sectional side view of the OMS-2 tunnel showing a possible mechanisms of CO2 sorption as a function of pressure and time.

Gatekeeper model: single CO2 diffusion barrier Gatekeeper model: two CO2 per 0.3 nm repeat distance reduces diffusion barrier Li et al., Chem. Phys. Lett. 580, 120 (2013). Ratchet model P < 7 bar

P > 7 bar P >> 7 bar Decreasing P Engineering hysteresis by controlling cations Replace K+ with another species that a-MnO2 accommodates Computationally, we tested: Ba2+ (effect of cation

charge) and Na+ (effect of cation size) Energy Barriers in a-MnO2 CO2 sorption models Gatekeeper Model Ratchet Model K+ 0.13 eV

0.37 eV Na+ 0.87 eV 0.04 eV Ba2+ 1.02 eV

0.96 eV Critical pressure for hysteresis: highest for Ba 2+; lowest critical pressure is model-dependent Recent experiments indicate critical pressure for hysteresis is higher in Ba2+ doped a-MnO2 ! Cu-BTC (a.k.a. HKUST-1): Metal-organic framework material 1.3 nm, 1.1 nm and 0.7 nm pores connected by square and triangular windows.

Exposed Cu2+ ions face into large pores Cu-BTC and other MOF materials: Large CO2 uptake. Liu et al., Langmuir 26, 14301 (2010) Cu-BTC and other nanporous materials: H2O sorption kills CO2 uptake Cant use for post-combustion CO2 capture Liu et al., Langmuir 26, 14301 (2010)

Past computational work: One H2O per Cu2+ Water oxygen (OW) bonds with exposed Cu2+ inside the large pore Present study: Stability analysis shows that the H2O molecules want to flop to one side or the other Cu-BTC: Comparative X-ray powder diffraction results

(Wong-Ng et al., in press) dry Highly hydrated (2.3 H2O per Cu2+) 3 distinct partially-occupied OW Positions, only one next to Cu2+ Water absorption experiments: as Many as 6.5 H2O per Cu2+ Fitting experimental OW positions with realistic arrangements of H2O

Principle: OW-OW separations should optimally be around 0.29 nm (separation of OW in hydrogen-bonded H2O molecules) Two possible arrangements of the OW shown above: Model 28 and Model 30. Model 30: 6 rings of 5 OW ~28 H2O per large pore seen experimentally Similarity beween arrangements of OW and arrangements of C in fullerenes: Inspired a third model: Model 42, based on fullerene on right

12 DFT-relaxed H2O arrangements 28 Model 28 gets ripped apart 30 42

Models 28 and 42 show some H bonds to framework (shown in red) Comparative binding energetics of (H2O)28 clusters in large (lp) and medium pores (mp) of Cu-BTC Intracluster vdW lp mp

-5.29 -13.89 -3.06 chemical -7.91 total

-16.15 -2.19 +1.30 Experiment: all OW sites are in large pores -14.78 Can we design a MOF where H2O uptake doesnt hinder CO2 uptake?

0.54 nm Experimental Ow-Ow pair distribution functions for ice Geiger et al., J. Phys. Chem. C 118, 10989 (2014). If the Cu-Cu separation was just a 0.05 nm larger, then the OW-OW would be less favorable for the structure to ice up

Conclusions Density functional theory calculations used as a tool for design of nanoporous carbon capture

materials a-MnO2 : Cation (i.e. chemical) changes predicted to change the hysteresis behavior Predictions being verified experimentally. Cu-BTC: Water forms large stable hydrogen bonded clusters, particularly in large pores Changing metal-metal distance should help

Recently Viewed Presentations

  • 7-5 Properties of Logarithms - Denton ISD

    7-5 Properties of Logarithms - Denton ISD

    Quotient Rule. b, m, & n must be positive numbers and b ≠ 1. log . b = log b m - log b. n. Examples: log . 4 = log 4 3 - log 4. 7. log . 3...
  • Chapter 12: Toddlers Human Growth & Development Kilgore

    Chapter 12: Toddlers Human Growth & Development Kilgore

    Provide stimulating activities in a relaxed setting. One year olds are beginning to understand more than what they can see, hear, and touch, however they are still egocentric (self centered) and their activities revolve around their own interest and needs....
  • Greater Essex County Parent Involvement Committee Tuesday, October

    Greater Essex County Parent Involvement Committee Tuesday, October

    EDSBY - our GECDSB sharing platform: Shelley Hudson . Election of new GECPIC Executive (pending decision) Community Members (3) - direction, considerations. Planning for next meeting (location, agenda, learning) Committee planning activity - KWL (Know, want to Know, need to...
  • Quantum Mechanics - Midland Independent School District

    Quantum Mechanics - Midland Independent School District

    Quantum Mechanics Can only refer to the probability of finding an e- in a region of space. Cannot specify the path 4 Quantum #'s are required to describe the energy of any electron in an atom (Pauli Exclusion Principle) No...
  • 30 For years, Oxford Tutorial College has been

    30 For years, Oxford Tutorial College has been

    30+ years in education with a focus on teaching, managing and looking after students' well being and safety. ... One-stop 'hub' for students. ... University of Leeds . University of Surrey. University of East Anglia. University of Birmingham. University of...
  • Problems with Yalta

    Problems with Yalta

    Quiz. Answer on your own paper. Remember your academic integrity! Based on your reading, answer ONEof the following questions:. What were the problems with the Yalta agreement? What was agreed and disagreed at Potsdam?
  • Arrhenius Theory  Acids ionize in water to produce

    Arrhenius Theory Acids ionize in water to produce

    3) Label the strongest acid (SA) and strongest base (SB) using the table on pages 8 and 9 in the data booklet. 4) Write an equation showing the transfer of one proton from the strongest acid to the strongest base,...
  • East Herts Early Consultation Service

    East Herts Early Consultation Service

    What is CAPA? …the Choice and Partnership Approach a clinical system that evolved in Richmond CAMHS from 2000 developed and implemented wholesale in East Herts CAMHS 2005 and now being used in many CAMH teams across the UK, New Zealand...