SSER Ltd. Carbohydrates are compounds of great importance

 SSER Ltd. Carbohydrates are compounds of great importance

SSER Ltd. Carbohydrates are compounds of great importance in both the biological and commercial world They are used as a source of energy in all organisms and as structural materials in membranes, cell walls and the exoskeletons of many arthropods All carbohydrates contain the elements carbon (C), hydrogen (H) and oxygen (O) with the hydrogen and oxygen being present in a 2 : 1 ratio THE GENERAL FORMULA OF A CARBOHYDRATE IS: Cx(H2O)y EXAMPLES The formula for glucose is C6H12O6 The formula for sucrose is C12H22O11 THE CLASSIFICATION OF CARBOHYDRATES Carbohydrates are classified as either sugars or polysaccharides CARBOHYDRATES SUGARS MONOSACCHARIDES Monosaccharides are single sugar units that include: GLUCOSE FRUCTOSE GALACTOSE DISACCHARIDES POLYSACCHARIDES STORAGE STRUCTURAL Disaccharides are GLYCOGEN and CELLULOSE and CHITIN are double sugar units that STARCH are important include: storage structural SUCROSE carbohydrates; MALTOSE animal cells store carbohydrates; cellulose forms LACTOSE glucose as glycogen and the fabric of many cells walls and plant cells store glucose as starch chitin is a major component of the exoskeletons of

many arthropods GLUCOSE MONOSACCHARIDES Monosaccharides are single sugar units that form the building blocks for the larger carbohydrates There are many different monosaccharides; they vary according to the number of carbon atoms that they possess and in the way the atoms are arranged in the molecules Glucose, the main source of energy for most organisms, is a hexose sugar with six carbon atoms and the formula C6H12O6 Glucose exists in both straight chain and ring form with rings forming when glucose is dissolved in water 1 H H H O H H H C 2 3 4 5 6 H O C O C H H H 6 5 H C

O H C O H 4 H O H H CHAIN STRUCTURE O H C O H H C O O 3 C C C H 1 H H 2 C O C O

H RING STRUCTURE H GLUCOSE This straight chain representation of the glucose molecule shows how the carbon atoms are numbered Glucose, in common with many other hexose sugars has an aldehyde group as part of the structure H The carbon atom that forms part of this aldehyde group is always carbon 1 The C = O carbonyl group has reducing properties such that all monosaccharides are reducing sugars The remainder of the molecule is a series of bonded carbon atoms with attached hydrogen atoms and hydroxyl (OH) groups H H O H H H 1 2 3 4 5 6 C O C O ALDEHYDE GROUP H

C H C O H C O H C O H H The carbon atom of the carbonyl group is referred to as the ANOMERIC CARBON ATOM and, for glucose, this is carbon 1 GLUCOSE In solution glucose exists in ring form Glucose forms a six-membered ring when the hydroxyl group (OH) on carbon 5 adds to the aldehyde group on carbon 1 H H 6 5 H 4 H C O H

C O H H C O O 3 C H 1 H H 2 C O C O H H GLUCOSE The ring structure of glucose is usually represented in Howarth projection C H 2O H H HO O H O H H H O H H 1 O H ISOMERS Each hexose sugar exists in both alpha and beta forms

These ISOMERS can be distinguished by the arrangement of the OH and H groups about the extreme right carbon atom IN the ring DISACCHARIDES Disaccharides are sugars composed of two monosaccharides covalently bonded together by a glycosidic linkage Maltose, also known as malt sugar, is formed from two glucose molecules Lactose, or milk sugar, is a disaccharide formed when the monosaccharides glucose and galactose bond Sucrose is common household sugar and is formed when the monosaccharides glucose and fructose bond MALTOSE = GLUCOSE + GLUCOSE LACTOSE = GLUCOSE + GALACTOSE SUCROSE = GLUCOSE + FRUCTOSE THE FORMATION OF MALTOSE Maltose forms when two alpha glucose molecules H undergo a condensation H O reaction and form a glycosidic bond between the two molecules C H 2O H C H 2O H O H O H H H O H H H O H HO HO H H O H O H

G LUCO SE - H2O condensation reaction 6 C H 2O H 4 H O H G LUCO SE 6 H H O 5 H O H 3 2 H H 1 H 1 H O C H 2O H O 5 4 H O H 3 H 4glycosidic bond 2

H MALTOSE 1 O H O H MALTOSE IS A DISACCHARIDE FORMED WHEN TWO ALPHA GLUCOSE MOLECULES ARE COVALENTLY BONDED TOGETHER REDUCING SUGARS All the monosaccharides and many of the disaccharides are REDUCING SUGARS Benedicts test is used to determine the reducing properties of the different sugars Benedicts solution is a turquoise liquid containing copper ions and sodium hydroxide; the copper ions exist as Cu2+ in this reagent If a sugar is a reducing sugar then the Cu2+ ions are reduced to Cu+ which, in the presence of alkaline sodium hydroxide, form copper oxide Copper oxide is insoluble and precipitates out of the solution as a brick-red precipitate REDUCING SUGARS When Benedicts test is performed with the disaccharides maltose and sucrose, the following result is obtained Sucrose is a non-reducing sugar SUCROSE RESULT Maltose is a reducing sugar MALTOSE RESULT REDUCING SUGARS Why is sucrose a non-reducing sugar? 6 6 C H 2O H H O

5 H O H 4 3 HO 2 H H O H H 1 H O MALTOSE C H 2O H O 5 4 H O H 3 H 2 H 1 6 O H O H Sugars reduce Benedicts solution when the anomeric carbon atom is made available to reduce the copper ions in the solution The anomeric carbon atom is the carbon of the carbonyl group present in the straight chain form of the sugar O H

C 5 1 4 3 2 6 1 H H O H H H 2 3 4 5 6 C O C H C O H C O H C O H H

H The anomeric carbon atom for glucose is carbon 1 2 5 4 3 SUCROSE 1 REDUCING SUGARS Why is sucrose a non-reducing sugar? 6 6 C H 2O H H O 5 H O H 4 3 HO 2 H H 1 H O H H O MALTOSE C H 2O H O 5

4 H O H 3 H 2 H 1 6 O H O H 5 H 1 2 H O H H H 3 4 5 6 C O C O C H C O

H C O H C O H H 1 4 Sugars reduce Benedicts solution when the anomeric carbon atom is made available to reduce the copper ions in the solution H 3 2 6 H The anomeric carbon atom for fructose is carbon 2 Fructose bonds to glucose to form sucrose 2 5 4 3 SUCROSE 1 Why is sucrose a non-reducing sugar? This potential anomeric carbon atom is unavailable 6 6 C H 2O H H

4 HO O 5 H O H 3 H 2 H O H H 1 H O MALTOSE C H 2O H O 5 4 This potential anomeric carbon atom is available to reduce Benedicts reagent H O H 3 H 2 H 1 6 O H O H When maltose is boiled with Benedicts reagent, the region of the ring containing the anomeric carbon atom (carbon 1) may open exposing a carbonyl group capable of reducing Benedicts reagent ONLY

AN ANOMERIC CARBON ATOM THAT IS NOT INVOLVED IN THE FORMATION OF THE GLYCOSIDIC BOND MAY BE EXPOSED The one available anomeric carbon atom is sufficient for this molecule to reduce Benedicts solution and thus MALTOSE is a reducing sugar 5 1 4 3 2 6 2 5 4 3 SUCROSE 1 Sucrose is formed when glucose forms a glycosidic bond with fructose 6 glucose 5 The anomeric carbon atom for fructose is carbon 2 H 1 4 3 O H glycosidic bond 6 2 5 3

1 fructose H The anomeric carbon atom for glucose is carbon 1 SUCROSE 3 4 5 6 C O H C O C H C O H C O H C O H H H H H

O As both the anomeric carbon atoms are involved in forming the glycosidic bond when glucose and fructose join, there are no potentially free anomeric carbon atoms available to reduce Benedicts solution H SUCROSE IS A NON-REDUCING SUGAR 1 2 H 2 4 H H H H 1 2 3 4 5 6 C O C O C H C O H C

O H C O H H H TEST FOR SUCROSE In order to determine if sucrose is present in a sample or solution then the following procedure is performed; The sample or solution under consideration is boiled for at least fifteen minutes in hydrochloric acid Boiling in acid breaks glycosidic bonds the glycosidic bond is hydrolysed This procedure is called ACID HYDROLYSIS The solution is then neutralised by adding drops of alkali while testing with pH paper Benedicts test is now performed on the resulting solution If a brick-red precipitate forms then sucrose was present in the original solution Acid hydrolysis breaks the glycosidic bonds in the sucrose molecules releasing free glucose and free fructose into the solution Glucose and fructose are both monosaccharides and therefore reducing sugars If no precipitate is obtained then sucrose was not present in the original sample The need to neutralise the solution following acid hydrolysis is due to the fact that the Benedicts test requires an alkaline medium POLYSACCHARIDES Polysaccharides are large polymers of the monosaccharides Unlike monosaccharides and disaccharides, polysaccharides are either insoluble or form colloidal suspensions The principal storage polysaccharides are STARCH AND GLYCOGEN Starch is a polymer of alpha glucose and is, in fact, a mixture of two different polysaccharides AMYLOSE AND AMYLOPECTIN AMYLOSE long unbranched chain of glucose units STARCH AMYLOPECTIN highly branched polymer of glucose units AMYLOSE STRUCTURE Amylose is formed by a series of condensation reactions that bond alpha glucose molecules together into a long chain forming many glycosidic bonds C H 2O H H HO C H 2O H O

H OH H H O H G LUCOSE H H O C H 2O H O H OH H H OH G LUCOSE H H O O H O H H H OH H G LUCOSE The amylose chain, once formed, coils into a helix O AMYLOSE STRUCTURE O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O THE AMYLOSE HELIX AMYLOPECTIN STRUCTURE Amylopectin consists of a straight chain of alpha glucose units with branch points

occurring at approximately every twelth glucose unit along the straight chain The branch points form when carbon 6 of a glucose molecule in the straight chain forms a glycosidic bond with carbon 1 of a glucose molecule positioned above the chain C H 2O H C H 2O H O H H O H HO H H H O H H OH O H O H G LUCO SE C H 2O H H HO H H O H H H O H G LUCOSE H H O 1

O H O 1 B r a n c h p o in t g ly c o s id ic b o n d 6 G LUCO SE 6 C H 2O H O H O H H O H H H O H H O G LUCO SE 1 CH 2 O H O H H H O H G LUCO SE 4 c h a in H O AMYLOPECTIN STRUCTURE

This highly branched amylopectin molecule is wrapped around the amylose to make up the final starch molecule This large insoluble molecule with branch points that allow for easy access for enzymes when breaking down the molecule, makes starch an ideal food storage compound REACTION BETWEEN STARCH AND IODINE SOLUTION When iodine in potassium iodide solution is added to starch, the iodine molecules pack inside the amylose helix to give a blue-black colour When iodine reacts with the starch in this piece of bread, the blue-black colour develops GLYCOGEN Glycogen is often referred to as animal starch Glycogen has the same overall structure as amylopectin but there is significantly more branching in this molecule C H 2O H C H 2O H O H H OH HO H H H OH O G LUCO SE H HO H H OH C H 2O H OH O B r a n c h p o in t g ly c o s id ic b o n d 6 O

H H H More of these branch points form H O H H H O H G LUCO SE H H O 1 G LUCO SE 6 C H 2O H O 1 O H H O H H H O H H O G LUCO SE 1 CH 2

O H O H H H OH G LUCO SE 4 c h a in H O GLYCOGEN GLUCOSE IS STORED AS GLYCOGEN IN LARGE AMOUNTS IN BOTH THE LIVER AND SKELETAL MUSCLES STRUCTURAL POYSACCHARIDES Cellulose is one of the most important structural polysaccharides as it is the major component of plant cell walls Cellulose is a polymer of beta glucose units where each glucose molecule is inverted with respect to its neighbour 6 CH2OH H 4 HO 5 H OH 3 H O H O 1 OH GLUCOSE H OH H

5 2 CH2OH 2 3 4 6 OH H O 6 CH2 OH GLUCOSE 1 5 1 O 4 H OH 3 H OH H O H O 1 3 4 OH H 5 2

OH GLUCOSE 2 H 1 O 6 CH2 OH GLUCOSE 4 glycosidic bonds The orientation of the beta glucose units places many hydroxyl (OH) groups on each side of the molecule Many parallel chains of beta glucose units form and each chain forms hydrogen bonds between the OH groups of adjacent chains STRUCTURAL POYSACCHARIDES The bundles of parallel chains forming hydrogen bonds with each other creates a molecule that confers rigidity and strength to the structures of which they form a part hydrogen bonds between parallel chains of beta glucose The rigidity and strength of plant cell walls is a consequence of the incorporation of cellulose into their structure STRUCTURAL POYSACCHARIDES CHITIN C h itin is a p o ly s a c c h a r id e fo r m in g th e e x o s k e le to n s o f m a n y in v e r te b r a te s . It is a p o ly m e r o f N -a c e ty lg lu c o s a m in e in b e ta 1 to 4 g ly c o s id ic lin k a g e . It is th e m a jo r e le m e n t in th e e x o s k e le to n o f in s e c ts a n d c r u s ta c e a w h e r e it a ffo r d s p r o te c tio n a n d s u p p o r t. N -A c e ty lg lu c o s a m in e END SHOW

Recently Viewed Presentations

  • 1818 ACC Chemistry

    1818 ACC Chemistry

    States. In thermodynamics, the state of a system is defined by specifying values for a set of measurable properties sufficient to determine all other properties. For gases, these properties are P, V and T. E.g. Your health state could be...
  • (Chemical Equilibrium) 1 2. 3.  1.  7.1  CuSO4

    (Chemical Equilibrium) 1 2. 3. 1. 7.1 CuSO4

    Fe3+ ในสารละลาย Fe(NO3)3 ทำปฏิกิริยากับ SCN- ได้สารละลายสีแดงของ [FeSCN]2+ เมื่อความเข้มของสีคงที่ แสดงว่าระบบอยู่ในภาวะสมดุล 2.
  • Chapter 13 Human Variation and Adaptation.

    Chapter 13 Human Variation and Adaptation.

    Chapter 12 Human Variation and Adaptation Chapter Outline Historical Views of Human Variation The Concept of Race Racism Intelligence Contemporary Interpretations of Human Variation Chapter Outline Human Biocultural Evolution Population Genetics The Adaptive Significance of Human Variation The Continuing Impact...
  • WEDNESDAY SEPTEMBER 21, 2016 AIM: How can analysis of ...

    WEDNESDAY SEPTEMBER 21, 2016 AIM: How can analysis of ...

    WEDNESDAY SEPTEMBER 21, 2016AIM: How can analysis of political cartoons reveal the plight of Russian Jews?. DO NOW: Take a close look at "A Walled World", drawn by political cartoonist Matt Wueker.What stands out to you? What do you think...
  • N. GREGORY MANKIW PRINCIPLES OF ECONOMICS Eighth Edition

    N. GREGORY MANKIW PRINCIPLES OF ECONOMICS Eighth Edition

    Assumptions. Simplify the complex world and make it easier to understand. Example: to study international trade, assume two countries and two goods ... Built with assumptions. Simplify reality to improve our understanding of it. The Economist as a Scientist. Examples...
  • Locations in Chinese Retail Industry - University of Florida

    Locations in Chinese Retail Industry - University of Florida

    There are two types of open markets in China. Regular open market: Retailers just leave their goods in the market and they have a small storage space "Old fair market": Small retailers will only gather up at a specific location...
  • Alternatív és komplementer medicina

    Alternatív és komplementer medicina

    Döntéshozatali folyamat tényezői egészségi állapot, a betegség természete (végső stádium, krónikus betegség, tartós kényelmetlenséget, fájdalmat okozó állapot, sikertelenül kezelt betegség), mentális egészségi problémák (labilis lelkű emberek, akik kvázi-pszichoterápiát keresnek) iskolai végzettség ...
  • LaTe middle Ages - Craig's E-portfolio

    LaTe middle Ages - Craig's E-portfolio

    LaTe middle Ages. A time for some horrible history. Middle Ages Events. Bubonic Plague. Little Ice Age. The Papal Schism. The Challenge of the Church. 100 years war. The Black Death (Same thing) ... Edgar Allen Poe's short story about...